
Report Card on MSIX App AƩach
Tim Mangan, TMurgent Technologies LLP

January 2024

Introduction
App AƩach is a technique that uses “applicaƟon layering” methods to quickly mount and publish MSIX
applicaƟons into a non-persistent (pooled) VDI scenario and scenarios involving shared operaƟng
systems like Remote Desktop Services and MulƟ-User Windows 10/11.

MSIX App AƩach is the MicrosoŌ-branded feature for use with Azure Virtual Desktops that uses the App
AƩach technique for managed deployment of applicaƟons to AVD desktop sessions. MicrosoŌ appears
to be renaming the “Msix App AƩach” feature name as “App AƩach in Azure” in 2024.

Other vendors with applicaƟon management features also use the App AƩach technique, including
Citrix, VMWare, and AppVenƟX. They may call it MSIX App AƩach or just App AƩach.

This paper will look at features of the technology, any issues with applicaƟon compaƟbility, and
performance of the underlying App AƩach technology used by all vendors.

Features
App AƩach uses a different format for the package definiƟon from the “normal” MSIX format. Actually,
there are mulƟple choices of new formats to choose from. These formats are beƩer suited to the needs
of the applicaƟon layering technique to ensure fast availability of the applicaƟons assigned to a user
aŌer they log onto a Windows session.

In general, this means that the package format is a windows disk parƟƟon (technically volume) that is
remotely mounted, rather than copied into the user’s VM, and integrated into the user environment.
This is done in a three-step process of MounƟng, Staging, and Registering.

In single-user OS, these are all done for each package. In a mulƟ-user OS, the mounƟng and staging
steps may be skipped for packages already added to another user.

Once the applicaƟon is registered, runs inside the same MSIX container that would have been used if the
MSIX format was used to deploy the package. This means that the applicaƟon should behave as if the
applicaƟon was naƟvely installed (subject to general MSIX limitaƟons).

App AƩach adds no new capabiliƟes to standard MSIX deployment and execuƟon other than the speed
of geƫng the package ready for the user. As there is no free lunch, this means that when the applicaƟon
is running, the package files will be accessed from over the network via this remote mounted share.
Given that in pracƟce, the typical scenarios involve the main OS disk also being a virtual disk accessed
over the network, this is of liƩle concern and actually a benefit in the reducƟon of write IOPS to the main
virtual disk.

Application compatibility
We have two things we need to talk about here. ApplicaƟon CompaƟbility with MSIX, and addiƟonal
compaƟbility concerns with App AƩach.

From Ɵme to Ɵme, we hear from customers that come to us with lists they discovered on the internet of
things that don’t work with MSIX. Most of these issues are outdated given the amount of work spent on
improving the app-compat story for MSIX over the last 5 years.

App AƩach originally imposed addiƟonal restricƟons, some of which have been addressed too.

Base MSIX app-compat issues:
While not a complete list, here are the things we hear about, and where the issues stand today:

1. MSIX package format does not support Device Drivers. ApplicaƟons which contain Device Drivers
may not work as expected when converted to MSIX package format. It is recommended not to
convert such applicaƟons to MSIX.

This is mostly sƟll the case, which is consistent for most app virtualizaƟon and layering products. The
normal approach for all of these deployment methods is to separate out the driver from the
applicaƟon and treat it as a dependency.

Under MSIX, it is possible to list this dependency in the AppManifest file of the package and it would
be automaƟcally installed, if available. While MicrosoŌ’s MSIX Packaging Tool uses this technique
successfully, this isn’t quite pracƟcal for most applicaƟons with drivers so we just don’t do that and
treat the drivers as a separate requirement, either in the base image or delivered via staƟc
deployment tools like ConfigMan, Intune, or even AutoPilot.

2. MSIX package format does not support Windows/NT Services. ApplicaƟons which contain
Windows/NT Services may not work as expected when converted to MSIX package format. It is
recommended not to convert such applicaƟons to MSIX.

This is no longer true. IniƟally services were not supported under MSIX. Support is available in
current generally supported OS versions. When support for services were added to MSIX, iniƟally App
AƩach did not support the services, but this was taken care of long ago and is no longer an issue.

3. Shortcuts are the entry point for the MSIX packages. ApplicaƟons with no shortcuts are not
recommended to be converted to MSIX.

This is wrong. There are many forms of entry-points other than shortcuts. AddiƟonally, even
“middleware” that exposes no entry-points other than being able to be called by the exe name by
another applicaƟon (think javaweb.exe) can be successfully packaged. This might be done as a
ModificaƟon Package, a Dependency Package, using Shared Package Container, or simply including
the middware component in the applicaƟon package that needs it. SPC only works on Windows 11
22H2 or above.

4. ApplicaƟons having condiƟonalized components are not recommended to be converted to MSIX.

This is tricky, and mostly misleading. The statement can be made about any form of applicaƟon
packaging that includes a recapture operaƟon, including MSI repackaging. Using standard best
pracƟces in packaging avoids these issues.

5. MSIX package format does not support Unsupported .Net Framework Version. ApplicaƟons having
unsupported .net framework version below 4.6.2 are not recommended to be converted to MSIX.

I guess this is true, but so what? That is because no support is available for an applicaƟon deployed
using any method (including MSI) that is using .Net Framework 4.6.2 and below because those
frameworks themselves have fallen out of support. But 4.8.1 is supported and those applicaƟons
should work fine when deployed on a system with 4.8.1.

6. MSIX package format does not support elevated privileges. ApplicaƟons having shortcut exe which
require elevated privileges are not recommended to be converted to MSIX.

This is no longer true (I think it was fixed in the 1704 OS release). Exhibits A and B for this are my
tools PsfTooling and TMEditX, both of which are MSIX packages that elevate. I’ll note that there is a
trick to geƫng an entrypoint applicaƟon that does not elevate to start a child process that requires
elevaƟon, but it can be easily done.

Based on what I see in the field, the following issues are valid today, even if not on that list:

 ApplicaƟons requiring certain types of Shell Extensions, such as a DragAndDrop handler.
 ApplicaƟons with lots of COM components that need to be used by more than one exe in the

package. Most COM based apps don’t have this issue, but there are a number that do.
 Registry DeleƟon Markers. We need this for handing apps that need an older version of Java.
 Plugins to Office. Add to this any MSIX package that needs to work with a component that will

run in a different containerized soluƟon such as App-V or Click-To-Run.
 It doesn’t work and we don’t know why. We started out 5 years ago with 75% of the apps in this

bucket. We are down to about 15%.

The first three items on the list are now considered to be items possibly fixable by the PSF. These are
being worked on. MicrosoŌ is believed to be working on Office.

App AƩach specific app-compat issues:
 While MicrosoŌ has previously addressed the issue with Windows Services under App AƩach
deployments, the only outstanding issues I am aware of would be:

 Packages that indicate Dependency packages. While the normal installaƟon of an MSIX package
would automaƟcally deploy the dependency (if not already present) when the package is
installed, the MSIX App AƩach deployment for AVD does not currently do this automaƟcally.
You can, however just assign the dependency in the Azure console. Even though Dependency
Packages have been available from day one for MSIX, we are only starƟng to make use of them,
mostly for well-known Framework dependencies like VCRunƟmes and WebView2.

 Shared Package Container. The Azure console does not have support for this, but in a bind it
could be pre-defined as part of the image as the packages to not need to be present to add the
sharing rule.

Getting from MSIX to App Attach format
Although there is nothing prevenƟng a soŌware vendor from making their soŌware directly available to
you in an App AƩach format, and we are seeing a small increase in vendors releasing in an MSIX format,
we are unaware of any releasing in the App AƩach formats today. So whether you get the MSIX package
from the vendor, or create your own by repackaging, you’ll sƟll need to convert it.

There are three different format opƟons available to you, and not all tooling that is out there supports all
of them.

Format DescripƟon LimitaƟons
VHD Uses the standard VHD format used by most app

layering soluƟons, so lots of tooling is available.
255 character file path limit

VHDX DiƩo, but has a larger maximum size. But you probably
don’t have app packages more than 2TB in size.

255 character file path limit

CIM Uses new Cim file system for improved performance. Not much tooling available

In all three of the formats, the MSIX files are stored uncompressed in the image, unlike the original MSIX
package where they are compressed. So, on average these images will take up 2.5 Ɵmes the storage that
the MSIX packages do.

The differences between the VHD and VHDX choices are unimportant to App AƩach. VHD already
supports a 2TB size which should be much larger than any applicaƟon image you are likely to ever create.
Other differences in the format are clearly not going to affect App AƩach. The VHDX version of a package
will be slightly larger than VHD, but not significantly so.

The CIM image format is, unlike VHD or VHDX, not a single file, but a folder with a handful of files that
make up the image. Although you could put mulƟple of these in the same folder for expediency (each
has a unique parƟal name), the best pracƟce is to keep each CIM separate by storing the files in a folder
with the CIM name. In the TMEditX conversion, when selecƟng the locaƟon for the CIM image, you will
want to create the folder when picking the locaƟon to store the image. The following image shows an
example of the files produced that together form this image:

While the CIM format may be harder to deal with, being new and with limited tooling, it is not subject to
the 256 character path limit, which affects applicaƟons like those including a Python distribuƟon. When
working with deploying packages using CIM, the techniques to deploy are different, although it is likely
that the tooling you use will hide those differences. More important are the differences in how you
debug as even visibility that there is a mounted package changes and you must use different (and more
obscure) commands for that visibility. This is a solvable problem at the OS level (by making Cim
filesystem a first class ciƟzen), should MicrosoŌ be compelled to do so.

Some of the known tooling for conversion from MSIX to App AƩach formats include the following:

Vendor/Tool DescripƟon
MicrosoŌ Packaging
Tool

Free. Available in preview build only. Supports conversion output to the
VHD format only.

MSIX Hero Free. Supports conversion output to CIM and PS scripts for tesƟng. May no
longer be up-to-date?

TMEditX Licensed. Supports all three formats. Supports conversion and tesƟng.
AppCure Licensed.

Storage Requirements
App AƩach applicaƟon images must be stored in a locaƟon with relaƟve low latency to the machine or
VM where they will be used. This implies that both the storage locaƟon and VM are located in the same
data center (or Azure region).

Both tradiƟonal Windows file shares and methods like Azure Files may be used for this storage.

While MSIX packages are compressed, conversion to these new formats are uncompressed. There is a
possibility that some of the files might be compressed in the CIM format, but without proper publicly
available documentaƟon on this new format we are not sure. Both VHD and VHDX also have a minimum
disk image size of 100MB, so small MSIX packages converted to these formats will require much more
storage than the original MSIX files.

The following average sizes were determined from a set of 90 packages we tested:

Format Average Size (MB)
MSIX 306.5
VHD 1002
VHDX 1027.5
CIM 654.7

As these images are only mounted by, not copied to, the VMs the cost associated with this storage is
minimalized, so this is more of a capacity issue.

Publishing Performance
When the user logs in, they may have to wait for their applicaƟons to complete a “publishing” operaƟon
before being available. As this occurs each Ɵme they log in, the publishing performance is of great
importance. An average user probably has between 5 and 10 packages that must be published, and
these occur serially.

We measured the publishing Ɵme for each of the different formats for a set of 90 packages, and the
averages are shown in the chart that follows. We include here tests that also show the average Ɵme for
these same packages using MicrosoŌ App-V in Shared Content Store mode, and with straight-up MSIX
installaƟon for comparison.

We are not sure why App AƩach takes longer than App-V, but possibly it is due to one or both of the
following:

1. File verificaƟon. MSIX includes digital signature verificaƟon, and while verificaƟon of the enƟre
package is lost in conversion to App AƩach, some detail remains and we suspect that per-file hash
verificaƟon might be performed during the staging operaƟon.

2. StateRepository. Some storage operaƟons during staging also require updaƟng the internal
StateRepository database on the VM. While some of this work is pushed to the background, it is
single threaded and subsequent packages are affected by previously added packages. This can be
seen in the GAP analysis of the logging.

4.0442225

3.6708570

3.2216186

28.5105596

1.67

0.0000000 5.0000000 10.0000000 15.0000000 20.0000000 25.0000000 30.0000000

Average time to "deploy" a package (Seconds)

App-V(SCS)

MSIX

CIM

VHD

VHDX

AddiƟonal analysis of individual packages seems to indicate that while the length of Ɵme to publish a
package has a casual relaƟonship to the package size, other factors seem to have a larger effect:

 The presence of a windows service in the package.
 The number of files in the package

Although package dependencies (like Framework dependencies) are currently ignored and would have to
be managed separately today, we expect that MicrosoŌ may address this; if they do add this to the App
AƩach publishing this would also likely have a significant impact, even if the dependency is already
present.

The following chart shows the publishing performance of the 90 packages on a per-package basis, sorted
by the original package size (larger on the right).

0

5

10

15

20

25

30

Deployment time per package (Seconds)
Sorted by PkgSize

App-V(SCS)

VHD

VHDX

CIM

Summary
App AƩach is an effect means to deliver packages to non-persistent and semi-persistent operaƟng
systems. This avoids issues that tend to occur in larger organizaƟons that must otherwise manage too
many OS image formats with different combinaƟons of applicaƟons and want the flexibility for quickly
deploying up-to-date applicaƟons to users and avoid storage costs of individual customized images.

The applicaƟon compaƟbility for App AƩach is mostly the same as for that of MSIX in general, but there a
small number of cases where App AƩach may not work for a specific applicaƟon package.

