

1909 Edition

Timothy Mangan,

TMurgent Technologies, LLP

January 2020

Introduction
Nearly two years ago Microsoft announced MSIX, a three headed effort that intends to be:

• A replacement for MSI based application delivery by software vendors.

• Tooling to help IT Professionals repackage existing software into MSIX. This involves both

Microsoft developed tooling and tooling from third party vendors that are already in the

repackaging business.

• And a runtime environment that embraces a modified form of the Microsoft Container used by

Universal Windows Programs (UWP).

In the original announcements Microsoft indicated that the road to MSIX would be a journey and it

would take several release cycles to complete all of the functionality needed. While some interpreted

that to mean 6-month cycles I always assumed it meant 1-year cycles and openly suggested it might take

more than that too. As 2019 ends and we start 2020, it is a great time to take another snapshot of how

MSIX looks today. This Report Card is an update to our look one year ago (see

http://m6conf.com/index.php/reportcard/46-report-card-2019)

We can summarize the changes as follows:

• Software vendors seem both interested but possibly wary, but, they generally have not made

the leap yet. Microsoft’s announcement on .Net Core UI3 has the potential to be the bridge they

need; we will need to watch this space.

• Tooling for IT Pros is improving, but more is needed.

• With the Windows 10 1909 edition released last fall, Microsoft released the third version of the

MSIX Runtime built directly into the OS. Complimenting this was backporting to versions of

Windows 10 prior to the 1809 original release and MSIX Core, which could provide some

functionality on even older OS versions like Windows 7.

For this year’s Report Card I expand the depth of coverage over what was done a year ago.

• Significantly, we ran the first community surveys to gather opinions from folks in the field and

those results will be reported in an attachment.

• The depth and width of testing for IT Pro repackaging has been expanded, with more

applications, more in depth analysis, and more partner vendors involved.

This year the report is divided into four categories:

1. Support by Software Vendors to release in MSIX format

2. Support by Tooling Vendors

3. MSIX Runtime Support in the OS

4. Community Survey Results

5. Other options

My intent is to update this report card in January of the following years so that we can judge the

progress. There are undoubtedly many other vendors that are active in this space and yet not included

in this list due to my limited resources and/or unfamiliarity with their offerings. If you are one of these

companies and are supporting MSIX, I apologize for the slight. Please contact me to ensure that I include

you in the future.

And here is this year’s report card…

1 Support by Software Vendor to release in MSIX format

Microsoft’s Independent Software Vendor (ISV) Partners, who build end-user applications for the

Enterprise, earn another “I” (as in “Incomplete”) for releasing software products in an MSIX

format.

This is not a bad mark, but a reflection on where we are at this point. In last year’s report, I said that I

really did not expect to see many independent software vendors release in MSIX format until at least

Windows 10 1903 was out, but more likely it would be after 1909, or possibly 2009, was released.

Vendors require a clear market, and clear set of tools that help them succeed, and a reason. They often

only make big decisions on development plans only once a year. An established vendor wants to

innovate and be leading edge but is not going to make the switch to something risky, at least not

without a backup plan, and not unless they see value to them.

The market

The audience of customers able to accept MSIX apps is growing over time. Microsoft has taken many

steps to improve this, including going back to make MSIX available on older Windows 10 versions (those

still under mainstream support) and even the extraordinary release of what they now call “MSIX core”

for other Operating Systems (more on that in a minute). And while this means that a vendor could

theoretically release in MSIX form to pretty much everyone, there are practical limitations:

• Older OSs require a separate installation to support MSIX

• Older Oss don’t have all of the latest capabilities of the MSIX runtime (and we aren’t sure if they

are more based on the 1809 runtime or something later). For example, Add-on packages either

don’t work or are impractical without the 1903 runtime changes. And Services and certain

registry fixes are not due until 20H1 is out. Microsoft could be back-port these things, but we

have not heard a commitment to do so.

• MSIX core doesn’t have a runtime at all. It simply is a way to install the MSIX form in a way that

acts like a MSI; the primary advantage is a single install format. If the vendor needed to make

changes to run under MSIX, those changes might need to be removed to work in a MSIX Core

environment. I’d rather just have the MSI in that case! Possibly there are other advantages for

Microsoft and the developers with using MSIX Core on Ios/Android/Linux operating systems, but

clearly these would not support the Win32/DotNet apps that enterprises are looking for.

The market for MSIX based apps continues to improve over time, but when is it enough for the vendors?

Is this this year, is it the next?

The tools

The tools were largely in place last year, and they continue to expand and get better. I do not see this as

a blocking factor for the software vendors.

I

The reason

Until recently, the MSIX story was more about benefits to others than to the software developers. Sure,

it would allow them to bring their old code into the new format and customers would have better

systems, but would the app run any better?

For some time an app had to choose between writing for UWP, using .Net Core, or for the traditional

Win32 and .Net Framework routes. This decision affects both how the UI is written and the APIs

available to them. And while UWP has some nice new UI features, the limited API made it hard to write

enterprise scale apps. Microsoft is now addressing this and giving the software vendors a reason to want

to move to MSIX. To overly simplify this, I will just call it “.Net Core UI 3” but basically it is a set of

developer related tools that allow them to construct apps that contain a mixture of elements UI and API

parts from both sides of the house. This is combined with the MSIX container to take advantage of it.

This may become the reason for vendors to move, but only once they really understand what can and

cannot be done with it. I suspect that like MSIX, Microsoft has more work to do in this area to convince

developers that this is the way to go. But it feels like things are moving in the right direction.

The current state

It is quite difficult to know just how much MSIX is out there. You can tell if an app is in the

UWP/Centennial/MSIX camp versus MSI/SetupExe camp easily enough, however, differentiating within

that first camp requires digging into the internal manifest to find out. I have noticed that the MSIX

Microsoft Packaging Tool is now MSIX (originally it was Centennial based), both Slack and Dropbox have

MSIX apps, but not much else (outside of my own store apps).

Indeed, we can even question just what is an MSIX app once we start looking. For the purpose of this

report, I am considering MSIX to be a package containing traditional Win32 or DotNet Framework

components which requires declaring the restricted capability “RunFullTrust”in the package’s

AppXManifest file. There are about 100 UWP/MSIX apps that come delivered in the user’s Windows 10

1909 experience out of the box, once logged in and the regional apps are applied. Most are UWP, 7

included the “RunFullTrust” capability1, but there are some that use restricted capabilities only available

because of MSIX, even if they do not include the “RunFullTrust” capability.

The likely venue to look for answers is the Microsoft Store apps, however it is impossible for anyone

outside of Microsoft themselves to search the catalog in a meaningful way to determine which apps are

UWP and which are MSIX. While I don’t have any evidence to prove it, here is what I think: I don’t think

there is much MSIX released to the public at this point. I am aware that there are a few tools that folks

involved with MSIX (such as myself) have released, and I suspect there are some MSIX games in the

store as well.

And let’s not forget about one of the biggest software vendors out there. What has Microsoft released?

Outside of the Packaging tool and the 7 MSIX apps I identified as part of the OS, what else is there?.

Certainly not the flagship Office, which would become a huge signal to the partner software vendors for

the future of this technology. Will the next version of Office be MSIX based? We don’t know. That is a

1 Microsoft.Desktop.AppInstaller. Microsoft.MicrosoftOfficeHub, Microsoft.MixedReality.Portal,

Microsoft.SkypeApp. Microsoft.Windows.Photos, Microsoft.XBoxGamingOverlay, Microsoft.YourPhone. If device is

a Microsoft Surface, the Microsoft.SurfaceHub app is added.

huge undertaking! At least Microsoft already has experience in getting Office running under App-V, but

running under MSIX brings in lots of additional challenges. Perhaps they’ll have to settle on parts of

Office in MSIX, and part not. If we assume that the next Office release will be a 2021 version, then we

should start to see signs on their approach later this year as preview become available.

Another place to look is activity in forums where developers ask questions and I see little sign activity

there outside of those just starting to kick the tires.

I assume that Microsoft is working closely with a few of the top tier developer partners, and those

activities will help shape the development of guidance to others, but the publicly available guidance that

I have seen so far have not shown a lot of depth.

While I did conduct a survey for developers to try to get their opinions, it is not clear whether it simply

failed to get to the target market of those devs involved or whether there just aren’t too many out there

yet.

While the grade for software developers remains at Incomplete this year, it is a more nervous

Incomplete than a year ago. My hope is that we see a few big successful releases this year, leading to a

wider adoption in 2021. My fear is that next year I still won’t know. It’s all about the apps; this Report

Card starts with the software vendors first because of that. If MSIX is going to succeed with MSIX,

vendors have to release in MSIX format.

2 Support by Tooling Vendors

Tooling Vendors stayed steady at “B+” this year. The vendors, especially the most popular

vendors, have been very active in the MSIX community.

This category is further broken into three sub-categories, and I will grade each of these independently as

well. The category includes:

• Tooling for developers

• Tooling for IT Pros in repackaging

• Tooling for distribution.

Many of the players are involved in multiple of these subcategories, and Microsoft themselves are also a

first party vendor in this space as well.

But as it is an evolving technology, without a well-defined public roadmap, it is difficult for third parties

to judge when and how much effort to put into MSIX. There is a very real possibility that work done to

have product today will have to be reworked or discarded as Microsoft makes changes to the runtime in

the future.

2.1 Tooling Vendor Support for Developers

Tooling Vendors supporting Developers earned an “A-”. Many of the vendors have products

available and you can build and deliver applications using these, as long as the applications do

not run afoul of the MSIX Runtime restrictions. Last year vendors earned an “A-“, and I suggested that

these vendors will need to up their games to earn such a high mark. While I have not seen significant

improvements, there is just enough to maintain this mark.

Most all of the traditional installer tooling vendors support building MSIX packages. Several new

companies have also sprouted up in the last couple of years as well. These challengers are offering

generally simpler products at a lower price, but completion in any form tends to make everyone work

just a little harder.

In addition to that tooling, there is the open source MSIX Packaging SDK on Github. While I haven’t

noticed anyone turn that into a prebuilt functional equivalent to free open source install builders (like

the popular free NullSoft installer for traditional setup packages), there probably is someone working on

it somewhere. Supporting the open source community with pre-built tooling is needed.

Going forward, all vendors will need to consider how to help developers create applications using a

mixture of traditional and modern components. It isn’t necessarily enough to say you can have both in

the package, the tooling must assist in the process.

2.2 Tooling Vendor Support for Repackaging

B+

A-

Software Vendors supporting IT Pro Repackaging of applications into MSIX earned a “B-” this

year. The initial Report Card talked about the great initial efforts in this space, well ahead of

what was happening in the developer space. Progress has been made this year in tooling, but we still

need to wait for improvements to the MSIX Runtime, the AppXManifest schemas, and Package Support

Framework.

Microsoft delivered multiple releases of the Microsoft MSIX Packaging Tool (MMPT), reacting to

feedback from the early version we were testing a year ago. It is a bit more mature and easier to use

than a year ago. Significantly, my testing indicates that issues with creating some form of package have

largely been eliminated, but there are still many API features used by traditional apps that should be

able to work under the MSIX runtime that it does not support.

Meanwhile, the Package Support Framework (PSF) has become a reality. This is an open source project

hosted on GitHub that includes Detours (some of the technology behind App-V and other vendor

products) for Windows API interceptions. IT Pros don’t want to build their own C++ code to fix up their

repackaged apps, so having pre-built versions is important. One form of this is PsfTooling, a free app in

the Microsoft Store that can be used while in any installation monitoring tool (like the MMPT) to inject

and configure the components. Other packaging vendors also include the PSF in their own products. The

issues with external submissions into the PSF source that were experienced last year have improved and

the supported functionality has expanded because of this. Considerable improvements have been made

to the PSF that overcome certain limitations of the MSIX Runtime, and a more flexible approach to how

redirection occurs was added to support roaming user scenarios. My testing reflects an increase in the

percentage of applications that are compatible for repackaging into MSIX as an outcome of these

changes.

Third Party vendors that offer repackaging tools continue to work on their products. Flexera, which a

year ago had not yet released an Admin Studio with MSIX output capabilities now has. While these

vendors generally hopped on the MSIX bandwagon early, my sense is that they have experienced less

than expected customer demand, and until MSIX matures they will likely place more emphasis on other

products/features until then. The testing performed as part of the Report Card for this year shows that

these tools have work to do just to catch up with Microsoft. These tools should produce better results

than the incumbent, or at least equivalent results with a superior experience and/or integration with

other packaging related tasks.

2.3 Tooling for Distribution

Software Vendors with support for MSIX Distribution at a solid “A”. I’d give it an A+, but until we

have production ready packages to distribute, there isn’t even a point in testing what we have

gotten.

Microsoft themselves have support for MSIX in the Microsoft Store (the “Consumer Store), the

Microsoft Store for Business, Intune, and SCCM. Additionally, we can use the same PowerShell

commands used to install and uninstall AppX (UWP based) and Windows Bridges (Centennial based)

programs.

B-

A

This pretty much means any vendor using the AppX PowerShell commands can probably handle MSIX

without any changes, with the possible exception of understanding the new file extension.

A long awaited entry into this space is also from Microsoft; MSIX App Attach was released at the end of

the year as a way to support MSIX in a non-persistent Windows Virtual Desktop environment. Built by

the folks they acquired from FsLogix, it offers a fast installment of MSIX apps for scenarios where the

user logs into a “fresh” copy of Windows each day and dynamically delivers assigned apps on the fly.

This type of support is critical if MSIX is to replace App-V in the non-persistent and semi-persistent

environments. While the demos look good, the release came so late so as to be untested in this Report

Card. One concern I do have is lack of full feature support for MSIX when using MSIX AppAttach to

deploy. For example, we know that MSIX is expected to start supporting packages with Services in the

first half of 2020, but indications are that this is architecturally incompatible with how MSIX AppAttach

works. We know from our work in App-V that this will be a blocking factor for the enterprise if not

addressed down the road.

3 MSIX Runtime Support

The MSIX Runtime moved up to a “C” grade this year, up from a “C+” last year. Ultimately

what is important is what can I deploy into production now, so progress has been made but

we still have a long way to go in App Compat.

The significant improvements to the MSIX runtime that I noted this year include:

• Support for Modification Packages (Add-Ons). The 1903 OS release included fixes to the VFS

layering that now make it possible to use Add-On packages that replace (update) files in the

main package. This would allow, for example, a vendor to release their product with a default

configuration that can be changed by Enterprise IT without having to repackage the main

package at all. Unfortunately, this support has not been back-ported (to my knowledge), and

only works if the files in question are packaged using VFS pathing.

• FTA, Shell Extensions, and Protocol Handlers The 1903 OS also included improved support for

packages using these types of integrations. There are forms of each of these that still do not

work, and Microsoft is expected to expand this support over time.

• File Access Changes. I don’t know when these changes occurred, but when testing on OS 1909

with December 2019 feature and security updates for the OS, I detected a change in file access

that allows some apps to now work without the use of the PSF when previously the addition of

the PSF FileRedirectionFixup was necessary. There appears to be no release note information on

a change, but if an app uses a particular method to open a non-VFS file for write access it will be

automatically copied into the user profile and writes will be performed there (previously the app

would receive an access denial). This is only one of many forms of file access that we’d like to

see addressed in the Runtime; it will be interesting to learn if this is a trend we should expect or

an exception to the previous explanations that we would need to use the PSF to sort out these

compatibility issues.

The list of things not yet supported remains large. We would have liked to see more done in the 1909 OS

runtime. Indeed, I expected that Services would have made it into 1909, but it looks like that will be in

the 2020H1 version of the OS.

Enterprises depend on a rich variety of Windows APIs that provide integrations with the OS and other

applications, enabling not only application features, but also the enterprise to build a user-centric

workflow that involves multiple applications to complete the task at hand. While the current MSIX

Runtime container is more capable than the UWP or Centennial containers, it is still a container that

isolates the application from other applications and the OS itself. Uncertainty if MSIX will become

capable of running all the apps that Enterprises count on still exists.

Microsoft spent a decade solving issues with isolation via App-V, but the fresh approach of MSIX seems

to require re-inventing the wheel for lessons learned in the past. Microsoft is clearly working on filling

these gaps, but information about this is limited. A roadmap detailing what will and will not be

addressed and when would be very helpful to all involved. In today’s era of shareholder lawsuits

companies don’t talk about future plans, but disclosures of intent can be stated without making

commitments can be achieved.

C

4 Repackaging Testing
At the end of the day, we need to be able to deploy the apps. Without a log of vendor supplied apps

available, we can work the path of repackaging existing applications into MSIX and testing those. In this

section, I’ll document the result of the testing. The experience with this testing was crucial to, and had

significant impact up, the grading earlier in this report.

This year, as part of the Report Card, I expanded the set of applications to be tested in a repackaging

scenario to 60 . The majority of these applications were applications that we commonly see Enterprises

distributing to employee workstations today. A few “special purpose” applications that I commonly use

to demonstrate application integration capabilities were also included to ensure that we are covering

the needs of most apps. Not included in the application mix were applications that are known to not

work under any virtualization or container, such as App-V and MSIX – for example those with device

drivers or plug-ins for Internet Explorer. Also excluded were problematic “heavy” applications like

AutoCAD and ArcGIS that are always difficult to deploy.

These applications were repackaged and tested six times:

• Using Microsoft App-V

• Using the Microsoft MSIX Packaging Tool (2019.1018 release) without shimming

• Using the Microsoft MSIX Packaging Tool (2019.1018 release) with PsfTooling 3.2.0

• Using Advanced Installer Architect (16.7) with their version of the PSF

• Using Flexera Admin Studio (2019R2) with their own launcher.

For each application, I categorized the results of testing into one of five buckets:

• No Packaging Workflow. The tooling does not yet support a way to package the application.

Right now, Add-on packages are a problem for some of these tools.

• Does Not Package. Using all the tricks that I am aware of, I could not get the app to produce a

MSIX package file. This category includes situation where an MSIX file would get created but it

could not be signed by signtool.

• Failed Installation. A package was created and signed, but AppInstaller refuses to install it.

• Failed Smoke Test. A smoke test is nothing more than installing the package and trying to see if

it installs and the primary application shortcut can be launched. For apps that are simple, the

primary use of the app might also be tested. Passing the smoke test does not mean that the

application is production ready, only that it is good enough for full acceptance testing.

• Failed Feature Test. The acceptance test showed a failure that would clearly prevent an

enterprise from putting this package into production.

• Partial Feature. The acceptance test showed that the most important features of the

application work, but that some features were not available. A subjective decision was made

that the lack of the feature(s) would keep most enterprises from releasing this package into

production, but that some might. In addition to features not, and app can fall into this bucket

due to the inability to disable updaters or application licensing challenges.

• Full Feature. While not every feature was necessarily tested, the Acceptance test indicated that

it is highly likely the package could be put into production.

While every attempt is made to be objective in testing, the interpretation of test outcomes nevertheless

is subjective. Someone else testing the same packages might categorize the results into different

buckets than me (especially between the last two buckets). But we have to start somewhere!

In the charts that follow, color coding is used to signify the categorization of the testing result. The

following table should be used to interpret those colors:

Finally, it is worth noting that the testing performed was using recapturing techniques. There may be

ways to build a MSIX package using traditional install builder tools from these same vendors that have

been extended to support MSIX, however that was outside the scope of this testing.

4.1 Comparative results using Microsoft App-V

Many of the applications in the list are older applications that are challenging to deploy in today’s

environments. Indeed, although I did not categorize the list using Native installation techniques, the

results would be far less than for repackaging in App-V. This is after all why we have App-V!

The 60 packages were packaged on Windows 10 1903 and tested on the same OS. Due to a long-

standing bug on Short-Names in the Sequencer that appeared in the 1809 release and has not been

addressed, many customers are continuing to use the 1803 Sequencer. I used a mixture of both of the

common approaches being used by App-V customers today:

• The ADK for 1803 Sequencer

• The ADK for 1903 Sequencer (a 1909 ADK is not forthcoming) supplemented by my TMEdit

program to post-process the package to solve the Short-Name issue.

Not surprisingly, these results were very good using seasoned tooling and collective wisdom on

techniques to package with App-V. If anything, I was harsh in the objective judgment on those 4 apps.

4.2 Results from Packaging with Microsoft MSIX Packaging Tool

The same 60 applications were packaging using the 2019.1018 release of the MMPT.

This is a significant improvement of the tests from last year. Last year we were testing against the initial

public release of the Packaging tool, and had many challenges just in getting packages created.

• This year we suffered no failures in creating the package, an improvement that is strictly

affected by improvements to the tool itself.

• The increase in Acceptable packages from 22% to 30% this year is due to a combination of

better recapturing on the part of the MMPT and improvements in the MSIX Runtime.

These improvements are encouraging, but not likely to convince an enterprise that MSIX is ready yet for

their apps, at least not without additional help.

The MMPT includes a remote option now, however it assumes that you use an external tool to control

the state of the capture virtual machine, so I did not use it. It seems appropriate only for a packaging

house that builds their own tools.

4.3 Results from Packaging with Microsoft MSIX Packaging Tool with PSF

For these tests, the MMPT version 2019.1018 was also used, but the packaging process was enhanced

by using PsfTooling 3.2.0 to inject and configure the Package Support Framework (PSF) into the package.

This version of the PSF contains a build of the latest PSF source code from GitHub available in December

of 2019. The same set of 60 Apps were used, but not all were repackaged:

• 28 Packages contained issues that we known to be addressed by the PSF.

• 32 Packages either had no issue requiring the PSF or the PSF had no available fixes.

Of course, just because the PSF has a fix for an identified issue doesn’t ensure an acceptable package;

many packages contain multiple issues and the PSF might only fix a subset of them.

Last year I excluded the PSF from Report Card testing with the MMPT because while it existed, it was

only available in source form and IT Pros were not going to build their own tool.

The primary impact in results comes from application of the FileRedirectionFixup. Using this fixup solves

issues with applications such as:

• Not being able to see configuration and plug-in binaries placed in the VFS equivalent of the user

AppData/Local and AppData/Roaming folders.

• Not being able to write to configuration files anywhere in the package.

Additionally, the new DynamicLibrary fixup that solves issues with applications find it’s dlls in the

package due to a lack of support for Path variable modification or support for AppPath registration.

Not affecting the measured results, but equally important were changes to allow configuration of the

redirection destination when using the PSF. This change enables the acceptable apps to be deployed to

less static scenarios, such as non-persistent VDI, semi-persistent environments like RDS, Citrix, and

VMWare Horizon, scenarios involving additional products like UEV and Ivanti to handle user data, and

desktop replacement strategies that depend upon all use data being redirected to an external home

drive.

4.4 Results from Packaging with Advanced Installer (16.7)

The same 60 apps in the prior test are used in these results with a pre-release version of Advanced

Installer 16.7 from Caphyon. The pre-release was used because version 16.7 was released prior to the

publishing of this report.

As was the case last year, Caphyon still has a few issues with the capture for certain packages. I share

details of the issues found with the vendors as part of the testing process, and I expect that many will be

addressed shortly.

When I shared these results, the folks at Caphyon showed me that the VFS overlay modification

packages are possible by avoiding the Advanced Repackager tool and instead creating the package

directly in Advanced Installer. This install builder technique works only as long as there is no installer to

run, in other words as long as you are just copying files. Using these techniques instead should make

packages that landed in the “No Workflow” result category possible, and might avoid issues that caused

apps to fall into the “Failed packaging” category.

Caphyon, like Flexera and several other of the third party tooling vendors, use a recapture technique

that enables the capture to be used in a variety of formats, including MSI, App-V, and MSIX repackaging.

The capture device can be a remote VM and they manage the entire process. The shared recapturing

tooling is a blessing, as the products are more robust and may already be familiar to the packager, but

can also be confusing to new users due to interface options not being designed for the one thing that

you are trying to do.

Caphyon includes their own private fork of the PSF source code. This helps them in some cases, as they

have created fixes not shared with the original source but hurts them in some of these tests as had not

yet incorporated the latest changes to the PSF prior to their product build. Their user interface for

injecting and configuring the PSF is less intimidating than that of PsfTooling, but at the loss of a little bit

of configuration flexibility. The loss of flexibility did not affect any of the testing outcomes here, except

for the packages marked “No Workflow”, however more manual work was required to get the

application icons in place.

Currently, Caphyon does not have a workflow through the Advanced Repackager tool that would

enabled me to create the equivalent of Modification Packages in the MMPT for use with VFS pathing.

This has been a catch-22. You need to use VFS pathing to do modification packages that replace/update

files in the main package, but the PSF was designed for packages at the root of the package (equivalent

to PVAD style packaging in App-V). As this was only added to the PSF in December, Caphyon will likely

enable these workflows in the future. This would allow for independent packaging of plus-ins and

potentially independent packaging of application configuration files (the latter scenario is not yet

included in the tested application mix).

4.5 Admin Studio

Admin Studio 2019R2 was also tested against the same 60 applications in a recapturing test.

I couldn’t test Admin Studio last year, as Flexera’s support for MSIX was for developers and analysis of

MSI packages for MSIX compatibility only. So this marks their debut in the testing. I did perform some

preliminary testing on their first version supporting MSIX repackaging, and the results using R2 are

remarkably better.

Admin Studio has a fully managed remote capture capability which is also shared with repackaging for

MSI, App-V, and MSIX.

While the InstallShield side of the house (used by developers to build packages from source) does have

PSF capabilities, this appears to not have been added to Admin Studio for recapturing yet. If you

package with an evaluation version it injects their own launcher program so you can see how the

process might work when they do. I did try to use PsfTooling inside their recapture, but unfortunately

they create the AppXManifest file differently than the MMPT so this will not work today without

extensive manual labor. Basically, with Admin Studio today I was unable to fix any of the problems that

I’d normally fix using the PSF so a comparison to the MMPT without fixups might be more appropriate.

Like Caphyon, there are still some capturing issues and a lack of workflow for those plug-ins in Admin

Studio. It likely is also possible that by using InstallShield for situations where an installer doesn’t need

to be run, or is an MSI, a workable solution is possible, but this style of package creation was not

included in the testing as IT Pros do not generally use InstallShield.

Admin Studio also offers the ability to work with an imported MSI based installer without using a

recapture phase but, as with other vendors, that was not attempted in this testing. This might allow one

to avoid some of the recapture issues that caused failed packaging, failed installing, and failed smoke

tests and lead to improved results.

4.6 Best Case Scenario for MSIX Packaging

The following chart represents the “best case scenario” for handling the applications; either any of the

five recapturing scenarios to product MSIX packages (i.e. excluding the App-V scenario) reported

previously in this paper. This chart has the “Best Result” for each of the 60 applications tested this year.

This is a big improvement over last year. But yes, we still have a long way to go. An enterprise isn’t going

to package using three different tools, and they need a higher acceptable app-compat.

A chunk of this year’s improvement came from addressing single issues that affected many applications.

Going forward each fix added, whether it be to the Runtime, the PSF, or the Tools, will have less of an

impact on results.

However, on the flip side we have already seen pre-release software (not included in this testing) for the

MMPT and the 2020H1 OS that address significant issues associated with Services and the Registry. The

latter is a huge relief to be because it is high on my list of things I thought I might have to try to add to

the PSF. That Microsoft fixes it in the OS Runtime is a huge relief as that is where it belongs.

What’s missing in the MSIX 1909 Runtime
My short list of support missing in 1909 includes the following two lists. The first list is potentially fixable

by existing or potentially developed shims, the second I believe can only be addressed in the MSIX

Runtime. There are more items that should be added to these lists, but these are the what I believe to

be the key ones.

Currently fixable via Packaging and Shimming:

• Ability for the package to contain user modifiable configuration files.

• Application Settings and Data in the package AppData Local and Roaming folders not seen by

the application without shimming.

• Shortcuts that have arguments.

• Shortcuts needing working directory.

• Shortcuts to files

• Path variable and AppPaths for dll search not supported.

Known to be expected in 20H1:

• Support for Services.

• Support for apps modifying registry items defined in the package.

Should require a new MSIX Runtime, and often MSIX format changes:

• Fonts in the package are not supported.

• Environment Variables are not supported.

• Support for plug-ins for natively installed apps.

• All Shell Extensions (some forms are supported today

• WMI Providers

• ETW Provider Formatters

• Windows Scheduled Tasks and Run keys

• Software Client System (default browser or mail client support, for example)

• Exposing COM objects

• Spoofing for Named Kernel Objects (oddly included in App-V and Appx but not MSIX)

• Layer hiding (Override Local in App-V)

• Deletion Markers for file and registry systems (used for things like multiple Java runtimes)

There are more items that should be added to these lists, but these are the what I believe to be the key

ones. Microsoft has committed to addressing some of these (no hard dates) and has publicly

acknowledged looking into others. The remaining set they have not publicly commented on (to my

knowledge), but at least they haven’t said “no” to.

5 Community Surveys
This year I created the first two Community Surveys to to explore the public opinions about how they

view MSIX. The intent of these surveys was both to provide the community a chance to see what their

peers think, and to provide Microsoft an additional avenue of feedback.

Two surveys were conducted. The first was intended for people at companies that produce software for

internal or external use. The second was for people at companies that acquire and distribute

applications internally. The full details on the surveys are available as a separate download from the

https://www.m6conf.com website.

The survey includes questions regarding participant background, experiences, opinions, and plans

regarding MSIX.

About the Author
Tim Mangan is an independent consultant and the owner of TMurgent Technologies, LLP. Recognized as

an industry leader by Microsoft as an MVP for more than a dozen years, and by Citrix for a half dozen as

a CTP Fellow, Tim is generally known as “the Godfather of App-V”, having led the effort to build the

original version of App-V at Softricity.

TMurgent provides consulting and training around application and desktop deployments. Our

“Packaging for App-V and MSIX” training classes are sought after by IT Professional Desktop Engineers

around the world.

TMurgent Technologies, LLP is an independent company engaged in the packaging space. TMurgent

primarily provides training to IT Professionals that are involved in Desktop Engineering and Application

Packaging, but we also provide some free and licensed software products in this space.

As an independent contractor, we may relationships with several of the vendors, some of which provide

support. Despite this, we believe that the information in this report does provide a fair and

independent view that represents the state of the industry at this time.

This report contains information gained from personal experiences and may not represent the best that

can be said about the vendors and products mentioned. Omissions and mistakes are my own, but they

are “honest” mistakes and not intended to malign.

Vendors have not been given an opportunity to review or correct potential factual errors in this report.

We hope to be able to do so with any future reports that we do.

