
 

 

 

 

 

An under-documented new MSIX feature 

that we need! 

 

 

 

A Community White Paper by: 

Tim Mangan 

TMurgent Technologies, LLP  



Introduction 
We are constantly looking for ways to improve the compatibility of running traditional Win32 and Dot 

Net Framework based applications inside an MSIX container.  This often includes adding the Package 

Support Framework to the MSIX package, but there are other lesser-understood features that were not 

originally part of MSIX but were added without fanfare or even much documentation. 

The under-documentation of these features is in part due to how they get added.  Generally we see the 

definition of how to specify the feature in the AppXManifest by scouring  MSIX extension schemas as 

they get released.  But these schema extensions only provide syntax but don’t tell us what they do or 

why you might want to use the feature.  They also appear before implementations are added into the 

client operating system so we can’t just try to turn them on either as they are ignored.   

Eventually, the feature support is added to a new OS version, usually a semi-annual release but could 

appear in a monthly feature release, but to date Microsoft doesn’t seem to add it into the release notes 

or even blog about it. 

InstallationLocationVirtualization (ILV) is one such feature.  I detected in in the UAP10 schema 

extensions many years ago, and based on the name along I felt it might be important, although the 

PackageWriteRedirectionCompatibilityShim sounds somewhat similar and is also under-documented in 

the Desktop7 schema extensions which appeared earlier.  Other testing has shown that this feature only 

affects file requests made to the primary folders of the package application path (not VFS paths).  This 

significant restriction makes it a poor candidate for most repackaging situations. 

My requests for documentation on these features have not produced much response, although now the 

item syntax now appears in the official online documentation for each.   For 

InstallationLocationVirtualization, the only current documentation is this one page here 

https://learn.microsoft.com/en-us/uwp/schemas/appxpackage/uapmanifestschema/element-uap10-

installedlocationvirtualization, which includes a single paragraph description: 

The documentation does not identify what OS version is required to be able to use this feature, but 

based on other UAP10 features where Microsoft has specified a minimum version, it should be either 

21H1 or 21H2.  I have verified that the feature works on both Windows 10 and Windows 11 21H2.  If you 

are running older versions of the OS in production you should verify the feature availability yourself. 

So what is InstallationLocationVirtualization and why should you be interested?  This paper attempts to 

answer this.  The information in this paper is not a substitute for Microsoft Documentation that we hope 

will eventually appear.  It is the result of some detailed testing, analysis using standard and home-made 

tools in a research that was not terribly unlike reverse-engineering. 

This extension is intended to be used by desktop apps in an MSIX package that write to their 

installation directory. These types of apps cannot normally write to their installation directory, 

so this extension redirects the write operations to a safe location in the app data. This 

extension also enables you to specify what happens during app updates to files in the app's 

installation directory that were previously modified, added, or deleted by the app. 



Summary for those afflicted with a short attention span 
In short, ILV is a package-level extension that may be added to the AppXManifest file to aid in 

application compatibility, especially when package files must be altered.  The OS support for this 

extension was added at an undocumented date, but probably 21H1, so we are nearly at a point that we 

can assume support in all production OSs. 

The ILV is 

implemented 

mostly in the 

bindflt and wcifs 

mini-filter drivers 

in the kernel, but 

there also appears 

to be some 

support in what I 

call the “MSIX 

runtime” software 

at the user-kernel 

mode boundary. 

By leveraging filter 

drivers, this provides for improved support over the previous 

PackageWriteRedirectionCompatibilityShim. 

The feature is appears to provide the ability for an application to write to, or delete, any file path within 

the package root folder and below (including VFS paths).  This is implemented by redirection to a per-

user shadow folder for the package, the 

same %localappdata%\packages\packagefamilyname\localcache area used by the PSF. (Note that this is 

LocalAppData and not AppData as mentioned in the existing limited documentation). 

This support is extended to requests made to the shadow area back to see package files. Applications 

that use native path requests will also be affected, but only if the MSIX runtime or PSF first provide a 

mapping.  So if you needed the PSF before for AppData, LocalAppData, and AppVPackageDrive files, for 

example, you’ll still need the PSF. 

Specifically, this feature is known to be needed for applications that write their configuration settings 

using the System.Configuration API as the PSF is unable to support that API.  Without the ILV support 

those apps will at a minimum be unable to save settings,  but I have seen apps crash or issue error 

dialogs to reinstall.  Apps that use other APIs to write to package files may use either the ILV or PSF to 

solve the write problem. 

The use of ILV will change some failure return codes to the app, specifically returning some 

PathNotFound errors rather than the AccessDenied message that the app would have seen natively. This 

is something likely to cause a problem in some apps when the feature starts getting used without 

additional support. 

The compatibility with both ILV with the PSF FileRedirectionFixup or MFRFixup is under investigation, 

however looks promising.  It certainly avoids the issue mentioned in the previous paragraph as file paths 

InstalledLocationVirtualization is the next big improvement to MSIX. 

Although overlapping functionally with the PSF, the ILV is not a full 

replacement for the PSF’s FileRedirectionFixup or MFRFixup, as these 

will also be needed in a majority of repackaged apps.  I expect a small 

number of apps may have conflict when used together right now, but 

over time, the PSF’s MFRFixup should become “ILV Aware” as we find 

and fix edge-cases where conflict occurs from using both techniques. 

Tim Mangan



would get redirected for those cases before the ILV kicks in.  In all likelihood, I will find that I need to add 

an “ILV aware” setting to the MFRFixup for best compatibility.  It probably makes no sense to have the 

MFRFixup do things that the ILV will do for us, and such a mode could improve performance and 

possibly avoid edge-case issues.  The MFRFixup is nearing its initial release and that release will not have 

the ILV-aware support added. 

The following table shows the success or failure of certain simple operations that are made by an 

application using the specified path when the file is present in the package. Green represents success, 

red is failure. 

R=Open file for read 

W=Open file for write 

D=Delete file 

File Path Requested by app MSIX MSIX+ILV MSIX_MFR MSIX+ILV+MFR 

C:\Program Files\Vendor R W D R W D R W D1 R W D 

<Root>\VFS\ProgramFilesX64\Vendor R W D R W D R W D1 R W D 

%localappdata%\Vendor R W D R W D R W D1 R W D 

<Root>\VFS\Local AppData\Vendor R W D R W D R W D1 R W D 

Modern “System.Configuration”2 R W R W R W R W 

 

The remainder of this document covers the background around this feature, details that have been 

discovered about the implementation, examples and information on some of the tooling used to 

investigate.  

 
1 The MFR will fail to delete the file, but return a successful response for app compatibility. 
2 App that uses System.Configuration API to store configuration information.  Failure to write often leads to app 

crash or reinstall prompts. 



Background 
MSIX applications run inside a specially configured Windows Container that provide many file based 

benefits. One of those benefits is that all files in the package live in a special namespace that defaults to 

the ‘C:\Program Files\WindowsApps\{FullPackageName}’ folder, and those files are protected from 

modification after installation.   

Furthermore, there are a set of folders for which the application may request a file from where the app 

normally would have found the file rather than from within the package folder namespace.  So, for 

example, a request for C:\Windows\System32\xxx.dll on an x64 OS system would result in a check to see 

if it exists under ‘C:\Program Files\WindowsApps\{FullPackageName}\VFS\SYSTEMX64\xxx.dll’ first, and 

if not look in the native location.  While there are many VFS folders that may be defined in the package 

namespace, the MSIX runtime only provides this mapping for a subset, as documented in the Packaged 

VFS Locations heading of this document: Understanding how packaged desktop apps run on Windows - 

MSIX | Microsoft Learn (https://learn.microsoft.com/en-us/windows/msix/desktop/desktop-to-uwp-

behind-the-scenes). 

For the application to have visibility to other VFS files, especially those in the package under 

VFS\AppData, VFS\LocalAppData, and VFS\AppVPackageDrive, the Package Support Frameworks 

FileRedirectionFixup was used.  This fixup not only adds in the missing mappings from native path 

requests to the package, it also supports a redirection of file requests by making a copy of the package 

file to an alternate area under 

‘%localappdata%\package\{packagename}\LocalCache\Microsoft\VFS\WritablePackageRoot’, making is 

possible for the app to update files.  Normally this is configured to prevent executable files from being 

updated for security reasons.   

MSIX Runtime and Mini-Filter Drivers 

The MSIX Runtime is a term that I use for software that implements must of this VFS redirection. This 

software appears to live at the User/Kernel boundary, likely inside files like NtCreateFile and/or 

ZwCreateFile. 

In addition to the MSIX Runtime, there is also MSIX support provided by the binflt 3and wcifs mini-filter 

drivers located below this in the kernel of the OS.  This can be depicted as a drawing, shown next, which 

I use in my training classes.  In the drawing you see the application at the top making a call to open a file 

using the Windows API CreateFile.  This in turn calls NTCreate File and then ZwCreateFile which is 

involved in the transition from user mode to kernel mode. The call then passes through many mini-filter 

drivers (which may or may not have support for this call) and finally into the file system implementation 

in the Windows Cache Manager and potentially out to the disk. 

  

 
3 Bindflt (which runs at Altitude 409800) appears to be a replacement of wcnfs (409900) mini-filter driver that was 

is prior versions of Windows 10.  It is possible that this coincides with ILV support being available. 



O

Old Crusty 

Win32 Code

V
e

n
d

o
r.E

x
e

Kernel32.dll CreateFile(A/W)

Function

Ntdll.dll

NtCreateFile

Kernelbase.dll CreateFile(A/W)

bindflt 409800

ProcMon 385200

wdfilter 328010

storqosflt 244000

WCIFS 189900

CldFlt 180451

FileCrypt 141100

luafv 135000

npsvctrig 46000

Wof 40700

FileInfo 40500

ZwCreateFile

ZwCreateFile

Windows File Sybsystem

(aka Cache Manager)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bindflt is believed to provide “namespace support” and appears to replace the older wcnfs mini-filter 

driver which provided container file system support.  The wcifs driver is thought of as a holdover from 

the server container implementation for protocol virtualization (IP Address Spoofing) that is not needed 

U
se

r M
o

d
e

 
K

e
rn

e
l M

o
d

e
 



in the desktop container, however there is file based functionality implemented as part of ILV in this 

driver. 

PSF FileRedirectionFixup and MFRFixup 

The FileRedirectionFixup is currently the most used technique for providing a variety of file based 

compatibility fixes for legacy apps under MSIX.  It is often considered complicated to configure and 

overly ambitious with making file copies as it uses a copy-on-access algorithm.   

A new fixup, the MFRFixup is just now becoming available as a potential replacement for the 

FileRedirectionFixup. This replacement is re-architected to solve many of the challenges of the 

FileRedirectionFixup, including support for copy-on-write, reverse redirection from the redirection area, 

and redirection to local for things like the Documents folder where we don’t want files trapped in the 

app’s private area. 

These fixups are implemented in user mode by intercepting application calls into WindowsAPI functions 

like CreateFile. 

These fixups are mostly used in situations where traditional Win32 and .Net Framework applications are 

repackaged into MSIX, however developers can and do sometimes use them to release older code as 

MSIX as well. 

PackageWriteRedirectionCompatibilityShim 

Microsoft added this feature to MSIX prior to the ILV. Like the ILV, this feature is similarly under-

documented  (see App capability declarations - UWP applications | Microsoft Learn 

(https://learn.microsoft.com/en-us/windows/uwp/packaging/app-capability-declarations) and I have 

not spent time to understand the implementation. The feature is triggered by requesting this as a 

Capability in the AppXManifest file. 

The purpose of this shim seems to be somewhat similar in aims to that of the ILV, that is it is designed to 

allow applications to write to package files.  Unfortunately the feature required the app to request the 

actual package path.  I think that this is because it is implemented above the MSIX Runtime, and may be 

using Detours to intercept at about the same level as the PSF fixups, just built into the OS. 

The limitation regarding VFS redirection has limited the usefulness of this feature, but it can be helpful 

in certain smaller applications. 

Modifiable App 

A different AppXPackage capability for a seemingly similar purpose, this seems to have been intended 

for either UWP apps, or as a form of private fix for a game development company.  I have never used it. 

InstalledLocationVirtualization 

The ILV is triggered by a package level extension added to the AppXManifest File.  An example of this 

syntax is shown : 

 

 

 



The “UpdateActions” settings appear to only affect what happens when the package is later upgraded.  

The normal behavior without ILV is to keep all types of changes that are stored in the redirection area 

when a package is upgraded, so I recommend using keep for all three action types.  I believe the action 

types have the following meaning: 

• ModifiedItems are modified copies of existing package files. 

• AddedItems are new files that were added by the application (the same path/name does not 

appear in the package folder) and ended up in the redirection area because the app tried to 

write it into the package folder or directly to the redirection area. 

• DeletedItems are deletion markers added to the redirection area that hide the presence of the 

file, even when it is in the package.  Deletion markers require ILV for support so this is 

something new, which is covered in the Details section of this document. 

It is interesting that Microsoft chose to configure the update scenario in such detail in the AppXManifest 

rather than make it a choice in powershell as part of something similar to the repair function. 

  

<Extensions> 

        <uap10:Extension 

          Category="windows.installedLocationVirtualization"> 

            <uap10:InstalledLocationVirtualization> 

            <uap10:UpdateActions 

              ModifiedItems="keep" 

              DeletedItems="reset" 

              AddedItems="keep"/> 

            </uap10:InstalledLocationVirtualization> 

        </uap10:Extension> 

    </Extensions> 



Examples 
I used a home-grown test application as part of my investigation, ‘BadAssTest’.  Information on this tool 

is in the Tools section at the end of of this paper. This is a Win32 Console application that will make 

certain filesystem calls to certain paths.   

The image below shows package files for the installation folder.   

 

 

The BadAssTest.txt file is the configuration file for the exe and the other files are used in file access 

testing. The contents of this file are shown here: 

I will only be showing results from the lines associated with the application folder, but the other lines 

help to fill out the picture of what ILV does. 

 

C:\Program Files\BadAssTest\TestFileA.txt,1,2,3,4,5 

C:\Users\Admin\AppData\Local\BadAssTest\TestFileB.txt,1,2,3,4,5 

C:\BadAssTest\TestFileC.txt,1,2,3,4,5 

<Root>\VFS\ProgramFilesX64\BadAssTest\TestFileD.txt,1,2,3,4,5 

<WritablePackageRoot>\VFS\ProgramFilesX64\BadAssTest\TestFileE.txt,1 

<Root>\VFS\ProgramFilesX64\BadAssTest\TestFileE.txt,1 

<WritablePackageRoot>\VFS\ProgramFilesX64\BadAssTest\TestFileE.txt,1 

<WritablePackageRoot>\VFS\ProgramFilesX64\BadAssTest,6 

<Root>\VFS\ProgramFilesX64\BadAssTest,6 



When using the PSF FileRedirectionFixup or MFRFixup, when you look at the redirection folder you’ll see 

normal looking files.  But with the ILV in place, the display looks very similar to that of the Microsoft 

App-V cache: 

 

 

The grey X over the icons seems to occur when the file is marked with the SparseFile marking in the 

extended attributes.   

Our experience with Microsoft App-V is that this meant that less 

than 100% of the actual file was present on disk.  Such files would 

start out with an empty file (well the EA takes of 4k so there is that) 

and that if you ask for the file properties you’d see a difference 

between the full file size and the size on disk.  App-V uses this 

information to determine when additional file blocks need to be 

streamed over to this system by the AppVStream mini-filter driver. 

With ILV, it seems that the wfsflt mini-system driver uses it 

siimilarly, although file contents are really an all or nothing thing, 

so if any file contents are to be updated, the full file is written 

here(copied and modified). 

Here is a view of the properties of that first file. Notice the 

difference on Size and Size on disk fields. 

 



My TestDirectory program shows more detail about sparse file, although it is more useful in the App-V 

case as it also shows what parts of the file are present on disk. (See section at the end of this document 

for more information on this tool). 

Another thing to notice in the file list of the redirected area is that it did not include all files that were 

present in the package folder.  With App-V, the packaging publish process would pre-create all of the 

placeholder files up front.  In a large package this would significantly slow down this process making it 

take seconds to minutes for the app to be ready.  Even with ILV, the MSIX AppInstaller does not create 

these placeholders.  Instead, they are created whenever the package file is accessed.  This matches our 

test cases for std::filesystem::exists, Get/SetFileAttributes, and CreateFile.  Furthermore, if you 

specifically make one of those calls against the filesystem path in the redirection area, wcifs will also 

trigger the creation of the placeholder.  This also occurs if the application requested the native file path, 

but another component (either PSF or the MSIX Runtime) redirected this into the package or redirection 

equivalent. 

Finally, in the file list of the redirected area, we normally would not have seen the file entry 

‘testfiled.txt’.  It was necessary to change the settings in explorer to show hidden and system files for 

this entry to show.  That is because test number 5 was run against the TestFileD.txt file of the program 

folder.  Without the ILV this call would have failed, but with the ILV the system puts a placeholder file in 

the redirection folder (changing the name to lowercase for some reason) but it has no contents (both 

file size and size on disk are 0), is not marked sparse, and is set with hidden and system attributes. 

Attempts to test the file for existence of the file or read once deleted (in the package or redirected 

pathing) will result in a FileNotFound return. 

Applications will look for files by either Opening and querying a directory, or using something like the 

FindFirstFile/FindNext file API.  Ultimately a directory contains the list of files under it.  The 

FileRedirectionFixup and MfrFixup have extensive logic to layer local, package, and redirected folders 

into a single list that it provides the apps.  From the testing shown here, it appears that the ILV has 

similar logic built into the mini-filter driver.  So unlike the partial list of files we see in the explorer when 

looking at the redirection area, the test calling FindXXFile shows the overlaid view of the redirection 

area on top of the package files.  Similarly, a FindXXFile call on the program folder will show the same 

overlay.  This includes new files that only exist in the redirected area. 

If an application queries an application directly, it opens a directory handle and then queries that handle 

for the files.  With user mode provided redirections (such as used in the PSF) this means that the app will 

only see the files in whichever copy of the directory was actually opened.  This is the most common 

source of remaining compatibility issues for MSIX.  Unlike a user-mode component, a filter driver has the 

possibility of solving this.  This is commonly done in App-V and other layering solutions, however I have 

not yet determined if or how this works with ILV.  



Details 
The findings of my investigation are as follows: 

• InstallationLocationVirtualization is a package-level extension that may be added to the 

AppXManifest that appears to impact the BindFlt and WCIFS mini-filter drivers inside the 

windows kernel , but also possibly the MSIX runtime software near the User-Kernel mode 

boundary (but before any mini-filter drivers). 

• With the feature enabled, application files inside the package may have a virtualized copy added 

to the package redirection area where they may be written to.   

• Read-only requests to certain files can cause empty file entries added to the redirection area 

using sparse markings in the extended attributes not unlike App-V cache files or OneDrive offline 

files.  Supported requests include: 

o Those at the root of the package and non-VFS subfolders. 

o Those under any package VFS folder. 

o Those requested using native paths that the MSIX runtime automatically checks the 

equivalent VFS folder. Note that package files in VFS folders like AppData, LocalAppData, 

and AppVPackageRoot are not subject to this initial redirection. 

• New files added to the package folders (both root and VFS folders) will be added to the 

redirection area. 

• Requests to write to certain files will cause a copy to be made in the redirection area and the file 

will be opened from there. Support is for: 

o Those at the root of the package and non-VFS subfolders. 

o Those under any package VFS folder. 

o Note that native path requests, including those that map for read-only purpose do not 

map for this purpose, and the app may receive a PathNotFound error instead of a 

AccessDenied error which might confuse the app. 

• The ILV also supports the deletion of a package file, although done via trickery.   

o If an attempt is made to delete the package file, a zero-byte file is created in the 

redirection area, using a lower-case version of the filename, and it is marked as both 

Hidden and System.   

o This is used as a trigger for later accesses to not find the file even if in the package.  

o The deleted file does not show up in a list of the files of either the package or 

redirection folder in FindFirst/Next File. 

• When ILV is in use: 

o Explorer will show directory listing of the redirection area with only the list files that 

have been accessed (including existence checks). This access could have occurred in a 

request by either folder, or a read request from a mapped VFS native path.  Deleted files 

are not shown by default, but may be seen by viewing hidden system files. 

o Explorer will show directory listing of the package are with all package files, even if there 

is a deletion marker for it in the deleted area. 

o FindFirstFile on the package folder will show all package files, except for any with a 

deletion marker in the folder. 

o FindFirstFile on the redirection folder will show all package files, except for any with a 

deletion marker in the redirection folder, including those not yet accessed. 



o Should the app try to access a file (exists, Attributes, Open for read or write) in either 

the package or redirection folder that is not currently visible in the redirection area in 

explorer (other than deletion marker), this will also trigger the placeholder which will 

then be accessed. FindFirstFile does not trigger this. 

o Note that OLV is not a true overlay layering of this folder over the package folder, but 

close. 

• ILV is implemented quite differently than the PSF FileRedirectionFixup and ManagedFileFixup, as 

well as the PackageWriteRedirectionCompativilityShim which are user-mode intercepts.  

Implemented as a filter driver, the ILV has impact to file calls that avoid these components.  One 

known case where this makes a difference is DotNet Framework apps that use 

System.Configuration API to read and store application settings.  These applications tend to 

crash or fail when saving application settings without the ILV. 

• The ILV can replace the need of the PSF FileRedirectionFixup or ManagedFileFixup in some 

cases, but more often it be needed to augment these compatibility fixes in other cases.  The ILV 

by itself does not make the non-mapped VFS pathing visible (for example if the app looks to 

AppData for a configuration file).  

• Experience in insufficient at this time to determine if ILV might cause issues to some packages, 

but at this time I recommend adding the feature by default and try removing it if the package 

has a problem. 

• ILV does not provide protection against package binary files being modified.  We consider it a 

best practice to prevent this in the FileRedirectionFixup/MfrFixup.  Combining these currently 

allows for the overwrite, something that might get addressed in an ILV-aware setting for the 

MfrFixup in the future. 

• The test results showing certain file requests being handled by bindfs without passing through 

lower altitude filter drivers may be of concern, and testing with more unusual filter drivers may 

be warranted.  Here, I am especially concerned with drivers that perform their own layering or 

user profile operations, such as the Microsoft FsLogix, Ivanti, Citrix UPD, and VMWare Volumes, 

and others. 

  



Tools and Techniques used in creation of this paper 
A number of tools were used in the creation of this paper.  Those wishing to perform their own 

investigations might find them handy. 

Fltmgr.exe 

Fltmgr is a built in OS tool to discover what mini-filter drivers are currently present in memory on your 

system.  You use a command prompt that has been elevated to be able to run the tool, but just typing 

FltMgr should give you an ordered list by altitude such as is shown below: 

 

Fltmgr has additional capabilities to detail the instances of a mini-filter driver. The instance is basically 

the namespace the driver is interested in.  Mostly this mean a volume like C:, but if you looked at 

npsvctrig’s instance you’d quickly realize that it is involved only with named pipes. 

Fltmgr also has the ability to unload an instance, and to load a new instance at a specified altitude, 

however I have found that this is unreliable so I use the registry technique described for Process 

Monitor. 

Process Monitor 

Process Monitor is a great tool to view file (and registry) activity.  The capture portion is implemented as 

a mini-filter driver with an altitude of 385200, which is just below the bindflt mini-filter driver.  This 

means that (by default), Process monitor will show activity after the PSF, 

PackageWriteCompatibilityShim, MSIX Runtime, and bindflt have potentially made changes to the call.  

Often these changes may be to try a different, or multiple possible filepath or even change parameters.   



Generally, but not always this leads to more ProcMon captured events than what the application 

requested.  But I have seen that there are times where something like bindflt might eat the request and 

respond without passing the request down to the actual file system!  This has lead me to believe that 

binflt holds in memory information about the existence of package files by name/path (or has some 

other out of band means to view Cache Manager details that avoids lower mini-filter drivers to 

determine this). 

It is possible to move the Process Monitor filter location by changing the altitude used.  I discovered this 

through trial and error over 15 years ago and use the technique for debugging and examining mini-filter 

driver behavior all the time.  The technique that I use, which is documented in many places on the web 

today, is to: 

• Alter the registry value ‘Altitude’ under the key 

‘HKLM\SYSTEM\CurrentControlSet\Services\PROCMON24\Instances\Process Monitor 24 

Instance’.  

• The number 24 seems to change only when Microsoft updates this driver, which is much less 

frequent than changes to the tool, but at some point that key will change because the driver 

changed.  If you don’t see any PROCMON## key then you need to start Process Monitor once to 

get values in place.   

• Choose the altitude that you want Process Monitor to use.  It needs to be unique, so put it just 

above or below the driver you are interested in. 

• After changing the value to ‘Altitude’ to a new number, you must modify the permissions on the 

‘Process Monitor 24 Instance’ key.  You must then reboot so that the driver can be reloaded at 

the new altitude when Process Monitor starts capturing. 

After doing this, always verify the new altitude using fltmc.  The image below shows the driver moved 

just below the wcifs driver. 

 

 



When doing this kind of testing, I prefer to have a very simple application scenario where I know exactly 

what the app is going to request.  This may be due to other forms of monitoring, or having access to the 

code.  I typically will write a simple app to perform just that one task, then run traces with the ProcMon 

driver loaded at different altitudes and compare the results.  This provides great evidence of what goes 

in the black box and what comes out the other side. 

Additional discussion of Process Monitor is in the Advanced Process monitor section later in this paper. 

 

TestDirectory.exe 

TestDirectory is a free tool I wrote to look at the effect of the filter drivers in Microsoft App-V. See 

Test_Directory: Tool for investigating App-V Cache Completeness (tmurgent.com) 

(https://www.tmurgent.com/APPV/en/resources/tools-downloads/tools-downloads-appv5/89-

tools/app-v-5-tools/166-test-directory). 

The tool also proved invaluable to my ILV investigation as the tool provides information about the 

extended attributes and reparse tagging used by pretty much any files supported by a layering filter 

driver. 

Here is an example when ILV was in use that shows the two marker files (where the file contents have 

not been changed so On Disk Size is just the 4k for the extended attributes), and a deletion marker file.  

 

 

ViewReparse.exe 

This is also a home grown tool that I modified from some sources I found online many years ago.  I’m 

not sure about the original copyrights so I’m not publicly posting my version.  Maybe you can find 

something similar online. 

The purpose of the tool is to open up and display the reparse tag and block information from a directory 

or file.  This information is used by certain drivers, and the tag value maps to the name of a specific 

driver so this can be helpful. 

For example, when looking at a folder in our redirection area, we might see this: 



 

The tab indicates that it is the Wcifs mini-filter driver that handles the directory.  Further data in the 

reparse block, which unfortunately is formatted on a per driver basis and generally not documented, 

seems to show the package path to the equivalent folder (in a form that is relative to the package root 

folder which would need to be known through other means). 

This is why I feel that, with ILV,  bindflt might be responsible for redirecting from the package to the 

redirection while wcifs is responsible for the reverse direction. 

This odd combination I find problematic, and I am sure over the years we’ll find an edge case where it 

becomes important! 

 

BadAssTest.exe 

This is an application written specifically for my needs in testing the ILV, but is flexible enough to be of 

help in any file based testing of this sort. 

 

Source for this app has been added as a project under my GitHub Repository at 

https://GitHub.com/TimMangan/BadAssTest.  

It is a Win32 Console application that will make certain filesystem calls to certain paths.  It is controlled 

by an external text file that defines file paths and test scenarios to run.  If you run the exe without a 

configuration file present it will dump out syntax help information like this: 

 

It should be obvious from the app name that either 

TMurgent doesn’t have an HR department or that 

Tim doesn’t listen to them. 



 

I put this exe file, along with a configuration file and other additional package files, and a shortcut to run 

the exe into an MSIX package. 

With this I can test the package without help, or by modifying the package to include the ILV, the PSF 

MFR, or both as needed. (I used my TMEditX tool for that package editing work).   

When the app runs a specific test, in addition to outputting the test scenario and results to the screen, 

the app uses the registry to place markers at the start and end of the test (including test results).  This 

makes it very easy to understand what test produces what events in a trace from a tool like Process 

Monitor. 

An example of console output is shown here: 

 



Combining this with Process Monitor can be very powerful for investigation, as shown in the following 

section. 

  



Invoke-CommandInDesktopPackage 

This PowerShell cmdlet can be used to start a process, like cmd or explorer, inside the container.  This is 

useful to get a cmd prompt or explorer process running inside the container.  These processes will 

automatically get the benefit of the ILV, and depending on the settings of the config.json file in the 

package, possibly that of the FileRedirectionFixup or MfrFixup. 

This is important for debugging, because explorer or cmd running outside the container does not receive 

the benefit of ILV or the PSF fixups. 

The cmdlet requires the PackageFamilyName, plut the AppId of one of the Applications from the 

package.  It actually doesn’t matter which AppId you pick.  There are several tools around to help you 

with this so you don’t have to find and type all that in. 

For example, here are two screen captures taken after several file operations were made against the 

package (The “A” and “B” files were part of the original package and deleted, while the “X” file was not 

part of the package but added by the app).   The cmd was run inside of the package, showing exactly 

what the app would “see”, while the explorer is external to the package. 

     

 

Hint: Use Process Explorer to show dlls loaded in a process to know if the PSF fixup is loaded in your test 

process! 



BadAssTest and Advanced use of Process Monitor 

For example, in the screen shot below we can see the start of processing a line from the file (the setting 

of the TestLine value on the top line.  The ParsePath shows the filename to be used in this test after 

parsing for <Root> or <WrtiablePackageRoot> as part of the file path.  TestCase shows the start of the 

test case (and type number which maps to a type of action). The TestResult is written after the test 

number is completed.   

 

In the example you can see that: 

• Test type 1 and type 2 produced no file events. In this case, Procmon was loaded below wcifs 

and the calls never got down to the ProcMon mini-filter driver. (Other tests implicate the binflt 

driver for stopping the calls and returning success).  

• Test 3, 4, and 5, show events as highlighted.  

Comparing procmon traces captured at different altitudes of the exact same test allows for comparison 

to determine the impact that a specific filter driver has on the operation. 

 

Furthermore, by analyzing the stack shown on an event, we can learn even more. Double-clicking on a 

Process Monitor event line brings up a popup dialog with more detail.  Part of that detail is the Stack 

tab. If you have read this far, you probably have had enough schooling to know what a program stack is 

about, so this can be helpful to us. 



 

You read this with the application at the bottom, with each entry above a call made by the function 

below, so the visual is upside down from our filter altitude diagram previously. The Windows cache 

manager would be “above” this drawing.  

We can see that the app (line 25) in user space called a flavor of CreateFileW, which in turn called a 

different flavor of CreateFileW (with different arguments), then ZwCreateFile which transitioned into 

kernel mode (setjmpex is an interrupt handler used for the transition and sets up the IRP used in the file 

i/o call. The IRP is what is passed through the mini-filter drivers up to the file system).  Lines 15-11 are 

the entry to a mini-filter driver that wants to affect this call and we see on line 10 that it is in the binfs 

driver.  Lines 4-0 are the calls leading into the Procmon Driver which performed the capture. 

Furthermore, we can compare this stack to that of the next event for more information.  Typically you 

might see that all of the addresses starting from the bottom of this list are identical up to a certain point.  

This implies (not proves) that the first event made its way to the filesystem and back to the level of the 

last stack line that did not change.  For example, if in the next event the calls were identical from the 

bottom to and including bottom most NTCreateFileEx, we can assume that the app made a single call 

and NTCreateFileEx made two calls into the filesystem from there. 

This can be useful in not only understanding where functionality is implemented, I have found this 

useful in reporting bugs to the correct vendor! 

 

App 

Procmon 

bindfs 

MSIX 

Runtime 



TMEditX 

Version 3.0 of TMEditX (soon to be released) has support for ILV.  It will default to recommending ILV as 

a fix for all packages.  This version will also have support for MFR (without the ILVAware features).  A 

pre-release of this software was invaluable for testing.  

LiveKD/WinDebug 

Such tools can also prove valuable, especially with checked builds of the OS.  If you aren’t actually 

debugging your own driver, however, it is a lot of work for little value. 

 

 

__end__  


