
Copyright © 2014 TMurgent Technologies, LLP

Effects of “VC RunTimes” in App-V 5 SP2

with HotFix 4 Deployment Performance

TMurgent App-V 5 Performance Research Series

June, 2014

VC Runtimes and Deployment Performance

Copyright © 2014 TMurgent Technologies, LLP

ContentsContentsContentsContents

1 Introduction .. 3

2 Background on VC Runtimes .. 4

2.1 Detecting VC Runtimes/MSXML In A Package .. 5

3 Summary of Where Impacts of VC Runtimes Are Felt .. 7

4 Testing Strategy Used ... 8

4.1 About the Testing Platform .. 8

4.2 About Test Packages and “Streaming Configuration” ... 8

4.3 About the Testing Methods ... 8

4.3.1 Test Package .. 9

4.3.2 Test Pass .. 9

4.3.3 Test Cycle .. 10

4.4 About the Test Results Accuracy .. 10

5 Test Packages Utilized ... 11

5.1.1 Warm-up Package .. 11

5.1.2 FullOfNothing (Baseline) .. 11

5.1.3 LotsOfVCRuntimes ... 11

6 Detail Test Results ... 12

7 About This Research Paper Series .. 14

VC Runtimes and Deployment Performance

Copyright © 2014 TMurgent Technologies, LLP

pg. 3

1111 IntroductionIntroductionIntroductionIntroduction

The purpose of this research paper is to document the effects that certain detected side-by-side

components (certain VC Runtime and MSXML components) have in Microsoft App-V Virtual

Application Packages.

The effort is squarely aimed at answering questions on how the detection/deployment of these

components in a package affect performance.

This work is part of a series of efforts to characterize the impact that different application

elements have on the performance of virtual applications under App-V 5.

Most readers of this research will find themselves satisfied with reading the second and third

section of this paper. The remaining sections detail the testing process, packages used, and

provide further test details and additional findings.

VC Runtimes and Deployment Performance

Copyright © 2014 TMurgent Technologies, LLP

pg. 4

2222 Background on Background on Background on Background on VC RuntimVC RuntimVC RuntimVC Runtimeseseses

Microsoft made a change to the OS platform at some point, maybe 3 or 4 years ago, that caused

certain1 side-by-side components to break virtual applications if they were captured inside the

sequence. The source of this change is unknown, but we don’t think it was an App-V change, and

packages that once worked stopped working in App-V 4.6 and above.

We initially noticed this on some VC Runtimes, but soon discovered that Microsoft MSXML also

suffered this fate. I also include Direct-X in the list of things suddenly broken, but there might be a

different cause on that one.

In 4.6, we developed a practice of keeping these components out of the package, and making sure

that we installed all of them on the base OS image used at the clients. I maintain a couple of

spreadsheets on my website that contain information relating each of the VC Runtime and

MSXML version files with links to the download page from Microsoft to get the installer.

Getting all of them installed on the base OS image was not that difficult when a company has a

good imaging process, or at least a good native deployment capability like SCCM.

Getting all of them installed the way we needed to on the sequencer was another story. We

found that some of the installers, especially VC Runtime service packs and security updates,

actively remove certain older versions known to contain a vulnerability. If this happened on the

sequencer snapshot and then we install an application that installed the “old” version, then the

old version got captured inside the package and we again had a broken package. So while we

would want to install on the client oldest to newest, on the sequencer snapshot it needed to be

newest to oldest.

This continued to be a problem in App-V 5.0, and Microsoft developed a solution in 5.0 SP2.

1 See http://www.tmurgent.com/appv/index.php/resources/tools/167-visual-studio-runtime-versions-chart and

http://www.tmurgent.com/appv/index.php/resources/tools/157-msxml-versions-chart for lists of versions that cause

issues in App-V.

VC Runtimes and Deployment Performance

Copyright © 2014 TMurgent Technologies, LLP

pg. 5

2.12.12.12.1 Detecting Detecting Detecting Detecting VC Runtimes/MSXMLVC Runtimes/MSXMLVC Runtimes/MSXMLVC Runtimes/MSXML In A PackageIn A PackageIn A PackageIn A Package

Starting in 5.0 SP2, Microsoft made changes to detect and support these components when

virtualized.

While there was detection logic added to the sequencer in 5.0, it appears that this logic simply

detects and calls out the side by side components in the report and lists them in the internal

AppX_Manifest file.

As the internal manifest is not readily available, the AppV_Manage tool (a free tool from

TMurgent) provides this information as well. On the publishing tab, click on the package and then

on the Analyze button to see if any are present in the manifest. Hover the mouse over the

counter for a list of the packages detected.[UPDATE GRAPHIC WITH TOOLTIP]

The important changes to support these components are located at the App-V 5.0 SP2 and above

Clients. In fact, the solution works with packages sequenced prior to SP2 and happen to have the

components present in the file system.

VC Runtimes and Deployment Performance

Copyright © 2014 TMurgent Technologies, LLP

pg. 6

Microsoft’s client implementation detects the component during deployment operations, extracts

them from the package and adds them natively to the system.

At first, I was glad not to have to deal with these components any more. We could just sequence

and deploy and never worry about them again. But I worried.

My initial worry was that we could capture a VC Runtime in a package that later turns out to

contain a vulnerability. In a situation without App-V, installing the new version of the VC Runtime

fixes this by actively removing the vulnerable version. When the app requests the old version, the

replacement is in the same family and is supplied by the OS instead and all is well.

With 5.0 SP2, if I publish the package, and then later install the updated VC Runtime, the same

thing happens. This is good.

But, if another user receives the VC Runtime patch first to their base image and later gets the

App-V package, the vulnerable version of the VC Runtime is laid down and used by the package.

Not a good thing! So when the feature was released I cautioned customers about this. Many

couldn’t care less, but for some security conscious customers this behavior was unacceptable and

they decided to retain the practice of excluding them from the package.

Now with the performance results described in this paper, we have a second reason to keep these

components out of our packages!

VC Runtimes and Deployment Performance

Copyright © 2014 TMurgent Technologies, LLP

pg. 7

3333 Summary of Summary of Summary of Summary of Where Impacts of Where Impacts of Where Impacts of Where Impacts of VC RuntimesVC RuntimesVC RuntimesVC Runtimes Are FeltAre FeltAre FeltAre Felt

This section highlights the most important results. Additional details appear in subsequent

sections, however many readers will stop reading after this section.

VC Runtimes/MSXML affect deployment performance in several ways:

• An increase in size of the AppX_Manifest file, where the detected components are

recorded, affect the Add-AppVClientPackage to a small extent. This file is copied locally

and parsed as part of this process.

• As additional files are in the package, these slow up add and publish operations. Add-

AppVClientPackage is further slowed down as the directory of the .AppV file is larger.

Publish-AppVClientpackage is further slowed down as the sparse blocks for these

components must be created (subject of a different research paper in this series) and

streamed down.

• During Publish-AppVClientPackage, these components, if not already natively in place, are

laid down on the native system. This is done by the client component (avoiding elevation

issues) and uses the “trustedinstaller” process on the individual files (rather than the

component installer). This represents the single biggest slowdown of deployment

performance that you can easily avoid found in the testing that produced this research

paper series. Simply pre-installing the VC Runtimes cuts the impact by over half, but pre-

installing and removing from the package is recommended for optimum deployment

performance.

• Additional performance degradation at runtime was also detected. The source of this is

unknown at this time.

VC Runtimes and Deployment Performance

Copyright © 2014 TMurgent Technologies, LLP

pg. 8

4444 Testing Strategy UsedTesting Strategy UsedTesting Strategy UsedTesting Strategy Used

This section provides details about how the testing was performed.

4.14.14.14.1 About the Testing PlatformAbout the Testing PlatformAbout the Testing PlatformAbout the Testing Platform

The testing results depicted in this paper are based on:

 App-V 5.0 SP2 with HotFix 4 running on a Windows 7 SP1 x86 virtual machine.

The testing was performed in an isolated environment using a Microsoft 2012 R2 server with

Hyper-V. The server has 24 processors and 64GB or RAM. To minimize external impacts, this

server utilizes local storage and contains a VM with the domain controller. App-V Package sources

were located on a share on this host.

The Test VM used had 2GB of RAM and was given 2 virtual CPUs. The App-V Client is configured

for Shared Content Store mode (which disables background streaming).

4.24.24.24.2 About Test Packages and About Test Packages and About Test Packages and About Test Packages and ““““Streaming ConfigurationStreaming ConfigurationStreaming ConfigurationStreaming Configuration””””

All Test packages used are specially constructed software packages that I developed. These

packages are generally stripped down to a bare minimum, except for an overabundance of the

one particular things we want to measure when using this package. In many cases, this means

custom software that I developed for the purpose of the test.

Unless specifically noted, each package was sequenced and configured for streaming by not

launching anything during the streaming training configuration phase of the sequencer. This

means that, barring mounting operations, almost everything in the package will fault-stream

(stream on demand).

4.34.34.34.3 About the About the About the About the Testing MethodsTesting MethodsTesting MethodsTesting Methods

All tests are automated using significant sleep periods before each portion of the testing to allow

all systems to settle down, and warm-up of the external components (hypervisor/fileshare) and

within the OS (App-V Client and drivers) are performed. The test process consists of

• A Test Cycle that consists of a series of Test Passes.

• Each Test Pass consists of a number of Test Packages.

• Each Tested Package is tested using a series of actions and measurements.

A Tested Package, consists of a series of actions, always preceded by a significant sleep period to

allow system background processes to settle down.

A Test Pass always starts from a freshly booted snapshot and with a dummy Test Package to warm

up the App-V Client and Driver sub-systems. The results of this dummy package are not used.

VC Runtimes and Deployment Performance

Copyright © 2014 TMurgent Technologies, LLP

pg. 9

A Test Cycle always starts with a Test Pass to warm up the external components of the Hypervisor

and Windows File Share. Because the packages are relatively small compared to the amount of

memory available, the packages are likely retained in memory in the Windows Standby Lists after

the initial Test Cycle. These are described as follows, from the bottom up.

4.3.14.3.14.3.14.3.1 Test PackageTest PackageTest PackageTest Package

For a given Test Package, the series of actions includes:

• Waiting

• Add-AppVClientPackage

• Waiting

• Publish-AppVClientPackage

• Waiting

• [Optionally Mount-AppVClientPackage2]

• Waiting

• First run (launch “cmd.exe3 /c time /t” inside the virtual environment).

• Waiting

• Second run (launch “cmd.exe4 /c time /t” inside the virtual environment).

The time required for each of the actions to complete is recorded.

4.3.24.3.24.3.24.3.2 Test PassTest PassTest PassTest Pass

A Test Pass consists of testing multiple Test Packages as follows:

• Reverting the test VM to a snapshot.

• Waiting for the Hypervisor to settle.

• Booting the VM and logging in.

• Waiting.

• A series of actions and measurements on a warm-up package. These results are never

used, it is only performed to warm up the client (client service, drivers, and WMI) and to

ensure that each subsequent package fairly tested under similar conditions.

• Waiting.

• A series of actions and measurements on the first package.

2 With SCS enabled, mounting the package does result in the actual file content being stored in the App-V file cache. I

test in SCS mode both with and without mounting to better delineate the cause of performance slowdowns on a

package.
3 This is used rather than a program in the package to produce a comparable time that varies based on special actions

that the client must perform during virtual environment startup and shutdown due to the package content.
4 The client is also known to perform special actions the first time a virtual environment is used, so the second run is

used for comparison to the first run.

VC Runtimes and Deployment Performance

Copyright © 2014 TMurgent Technologies, LLP

pg. 10

• Waiting.

• A series of actions and measurements on the second package.

• Etc…

• Recording results

4.3.34.3.34.3.34.3.3 Test CycleTest CycleTest CycleTest Cycle

Finally, A Test Cycle consists of several consecutive test runs of the same Test Pass. The first pass

is used to “warm up” external systems and achieve a relatively consistent amount of caching by

the server. The results of this pass are not used, but the results of the remaining passes are

averaged to produce results. A Test Cycle typically requires a full day to complete.

4.44.44.44.4 About the Test Results AccuracyAbout the Test Results AccuracyAbout the Test Results AccuracyAbout the Test Results Accuracy

As careful as I attempt to be to eliminate variability in the results, there is a fair amount of

variability in results between two passes.

Due to the nature of the background interruptions affecting the results, the impact on result

accuracy is felt much more on measurements that are shorter in duration than those that are

longer. With measurements that are sub-second, this can produce results that typically vary by as

much as +/-10% from the average.

Instead, I use an approach to test with a sufficient number of test cycles and select the minimum

value seen on any of the tests. The more repetitions that are made, the better this minimum

value represents the time it takes for App-V to complete the task without the effects of any

extraneous background interference.

VC Runtimes and Deployment Performance

Copyright © 2014 TMurgent Technologies, LLP

pg. 11

5555 Test Packages UtilizedTest Packages UtilizedTest Packages UtilizedTest Packages Utilized

This section details the packages used in testing.

5.1.15.1.15.1.15.1.1 WarmWarmWarmWarm----uuuup p p p PackagePackagePackagePackage

This package is primarily used as the first package in a Test Pass, to warm up the OS and App-V

Client components and dependencies5.

5.1.25.1.25.1.25.1.2 FullOfNothingFullOfNothingFullOfNothingFullOfNothing (Baseline)(Baseline)(Baseline)(Baseline)

This is a minimal App-V Package.

In developing this package, I discovered that there is an issue with the App-V Client in that there

appears to be some sort of undocumented minimal package requirements. If you create a

package with no registry entries, no files, and no integrations, the Add-AppVClientPackage cmdlet

will error out with error 700002.

Therefore this package consists of one HKLM registry key, one HKCU registry key, one text file in

the PVAD folder, and one shortcut (to the text file).

The package was tested to produce a baseline for “absolute minimum” of what the App-V Client

can do. These numbers are useful in determining the amount of overhead that the VC Runtimes

place on the system.

5.1.35.1.35.1.35.1.3 LotsOfLotsOfLotsOfLotsOfVCRuntimeVCRuntimeVCRuntimeVCRuntimessss

This package consists of all of the VC Runtimes that I had available, from 2005 through 2012,

installed from oldest to newest. While this consisted of 13 installers, the end result contained 78

VC Runtime components in the final report.

5 When conducting tests that use mounting, I found it necessary to warm up the system without mounting this

package. It appears that the first client activity after boot requires additional time to warm up the client, possibly

loading drivers. But I also found that mounting this package causes an odd additional 1 second hit to any

subsequently Add-AppVClientPackage commands (even after settling time). This issue only seems to exist with this

package, and mounting other packages does not affect subsequent Add cmdlets. The cause of this is unknown.

VC Runtimes and Deployment Performance

Copyright © 2014 TMurgent Technologies, LLP

pg. 12

6666 Detail Test ResultsDetail Test ResultsDetail Test ResultsDetail Test Results

This section provides additional details of the testing results not reported in the summary.

Tests were performed with and without Mounting, and with SCS Mode enabled or disabled. The

package was tested two different ways:

• On a “clean” client that contained only those VC-Runtimes required by the App-V Client.

Because the impact is primarily on publishing, the results of all scenarios are similar.

• On a client with all of the VC Runtimes pre-installed in the same order as used in the

package. These tests reduced the publishing time to less than half of the time.

In situations where deployment performance is crucial, such as VDI scenarios, these results show

the most dramatic degradation in deployment performance of any of the tests run in this series.

And it is the easiest change in your approach to achieve improved performance, roughly 200ms

Results reported are based on an ideal test environment. Performance impacts identified

in this paper will be very different in production environments. Specific numbers are only

useful in comparison to numbers from other research papers in this series!

VC Runtimes and Deployment Performance

Copyright © 2014 TMurgent Technologies, LLP

pg. 13

per captured file (1.14 seconds per VC installer package) by removing the component you’re your

package and pre-installing on the client image.

From the numbers we reach the following conclusions:

EACH CAPTURED VC RUNTIME INSTALLER ADDS

ABOUT 20MS ADD STEP (3.6MS/VC FILE)

 EACH CAPTURED VC RUNTIME INSTALLER ADDS ABOUT

18MS TO THE FIRST RUN (UNLESS PRE-INSTALLED)

EACH CAPTURED VC RUNTIME INSTALLER ADDS

ABOUT 1.15SEC TO THE PUBLISH STEP, UNLESS

PRE-INSTALLED (204MS /VC FILE)

 ONCE INSTALLED, THE PUBLISHING TIME DUE TO VC

RUNTIMES IS REDUCED BY MORE THAN 50%.

VC Runtimes and Deployment Performance

Copyright © 2014 TMurgent Technologies, LLP

pg. 14

7777 About This Research Paper SeriesAbout This Research Paper SeriesAbout This Research Paper SeriesAbout This Research Paper Series

This research paper is part of a series of papers, released by TMurgent Technologies, that

investigate the performance impacts that certain application contents can have in the deployment

of Microsoft App-V 5 packages.

Through these papers, we can better understand what areas to focus on when packaging

applications for App-V when deployment and end-user experience is important. Additionally,

with an understanding of these papers you can better target a specific package that is performing

poorly and prioritize your efforts to improve it.

TMurgent Technologies, LLP is based in Canton, MA, USA; just 17 miles south of the offices where

Microsoft develops the App-V product. TMurgent’s Tim Mangan has a long history with the

product, having built the original version at Softricity more than a dozen years ago. TMurgent is

well known in the App-V community as a source for the best training classes on App-V as well as

an endless supply of tools and information. More information is available at the website,

www.tmurgent.com

