

Copyright © 2014 TMurgent Technologies, LLP

Effects of “A Really Big File” in App-V 5 SP2

Deployment Performance

TMurgent Performance Research Series

June, 2014

BIG FILES AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

ContentsContentsContentsContents

1 Introduction .. 3

2 Background on Really Big Files ... 4

2.1 Detecting Reparse Points and Sparse Blocks and how much is cached. 4

3 Summary of Where Impacts of Files Are Felt .. 7

4 Testing Strategy Used ... 8

4.1 About the Testing Platform .. 8

4.2 About Test Packages and “Streaming Configuration” ... 8

4.3 About Special Testing for this Paper .. 8

4.4 About the Testing Methods ... 9

4.4.1 Test Package .. 9

4.4.2 Test Pass .. 10

4.4.3 Test Cycle .. 10

4.5 About the Test Results Accuracy .. 10

5 Test Packages Utilized ... 12

5.1 Lots_OfNothing (Baseline) ... 12

5.2 Sequential Read with Big File... 13

6 Detail Test Results ... 14

6.1 Standard Testing ... 14

6.2 Testing using the SequentialRead program inside the VE .. 15

6.2.1 Mounting versus Stream-Fault .. 16

6.2.2 SCS versus Caching ... 17

7 About This Research Paper Series .. 18

BIG FILES AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

pg. 3

1111 IntroductionIntroductionIntroductionIntroduction

The purpose of this research paper is to document the effects that a really large file has in

Microsoft App-V Virtual Application Packages.

The effort is squarely aimed at answering questions on how such bulk data files in a package

affect package performance.

This work is part of a series of efforts to characterize the impact that different application

elements have on the performance of virtual applications.

Most readers of this research will find themselves satisfied with reading the second and third

section of this paper. The remaining sections detail the testing process, packages used, and

provide further test details and additional findings.

BIG FILES AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

pg. 4

2222 Background on Background on Background on Background on Really BigReally BigReally BigReally Big FilesFilesFilesFiles

There is nothing special about really big files. They just take up lots of bandwidth and lots of disk

space. But as we found out last year, with less than perfect software handing large files, they can

also take up an awful lot of CPU to handle them.

This paper looks at issues discovered with large files last year against App-V 5.0 SP1 and updates

the results using the currently latest software, which is so much better! This paper may also be

useful in conjunction with other papers to understand the impacts of larger packages that you

might choose to deploy over App-V.

2.12.12.12.1 Detecting Reparse Points and Sparse BlocksDetecting Reparse Points and Sparse BlocksDetecting Reparse Points and Sparse BlocksDetecting Reparse Points and Sparse Blocks and how much is cached.and how much is cached.and how much is cached.and how much is cached.

When the App-V Client brings in a package it initially creates placeholders for all of the files and

gives each file record two special attributes, marking the file with a “Reparse Point” and a

“Sparse” attribute. The Reparse Point “tags” the file so that the App-V Streaming driver knows

that this is a file that might require streaming.

To determine if a package file is actually fully cached at the client, windows explorer provides a

visual hint.

In this image above, files with the grey “X” on them are not fully cached. You can also right-click

one of the files and request the Properties dialog (as shown on the cover of this document).

Comparing the size (which represents the logical size of the file) and size on-disk fields

approximates the completeness of the caching of the file.

If you are really curious about completeness, you should view the sparse blocks directly. You can

download a free tool from the TMurgent website called “Test_Directory” for this purpose. Point

this tool at the App-V cache and it will show you the detail of what sparse blocks are present on

the files and what parts of the file they represent.

BIG FILES AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

pg. 5

Adding the reparse point and sparse information to the file increases the on-disk size of the file

ever so slightly. But when portions of the file, such as the case in the image above, are not yet

streamed into the local App-V cache the on-disk size can be small.

As can be seen in the illustration above and the other on the cover of this document, this all

means that the amount of space actually taken up on disk for a given file might be either less, or

slightly more, than the actual file.

When the stream driver notices a read request of a file tagged with an App-V Reparse point, it

checks the sparse blocks similarly to the tool above and determines if the portion of the file

requested is locally cached or not. If it is not cached, it places the read request on hold and

queues up a streaming request to acquire the content. When the content arrives it is immediately

handed off to the requesting application. Then, unless Shared Content Store (SCS) Mode is

enabled, it writes the new sparse block to the file.

With SCS Mode enabled, the files (normally) have only the Sparse Attribute but no

SparseOnDiskBlock records will be present. With SCS mode enabled, however, it is possible to

force cache the contents of a package using the Mount-AppVClientPackage cmdlet or from the

optional Client Management Console app.

When streaming is occurring, especially with a Big File, there is not only much network traffic, and

possibly disk write operations, but additional CPU expended to perform decompression. All data

files in the App-V package are compressed and remain compressed during transmission. The

client uses a combination of the App-V Archive format “Central Directory” and the

StreamMap.xml file contained inside the package to know which compressed block to stream

over for decompression.

The decompression technology used allows each compressed block to be independently

decompressed, so the compressed blocks may be delivered in any order. The size of each

decompressed block varies, as the compression technique uses 64KB of uncompressed data that

is compressed into the block.

Network traces indicate that the client appears to be smart enough to not ask for the same

compressed block when the application first asks for only part of the block and then shortly later

asks for another portion of the same compressed block. Due to queuing techniques, possible SCS

BIG FILES AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

pg. 6

Mode use, and timing of the requests by the application this process might not be as efficient as it

could be all of the time.

BIG FILES AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

pg. 7

3333 SummaSummaSummaSummary of ry of ry of ry of Where Impacts of Where Impacts of Where Impacts of Where Impacts of FilesFilesFilesFiles Are FeltAre FeltAre FeltAre Felt

It is important to keep in mind that this research is only a large files. A separate research paper

will address a large collection of smaller files, which impact performance in very different ways

under virtualization.

Large Files within a package affect performance in several ways:

• An increase in size of the .AppV compression central directory index causes more data to

be streamed during the Add-AppVClientPackage step. Each 64KB block (size before

compression) adds an entry into the index; a small file probably makes no difference, but a

large file is detectable. The client reads the entire central directory when it opens the

App-V file so that it may maintain a complete table of these indexes.

• During the Publish step (when the large file is not part of the publishing block), a smaller

impact is also detected. This is believed to again be due to the large compression

directory of the .Appv file.

• During Mount operations, either command or background streaming, the file is streamed

over the network and written to the cache. Obviously file size and compressibility will

impact the time taken.

• Additional performance degradation at runtime was also detected. This was unusually

large in the first run, but still detectable in subsequent runs, even when the large file is not

used in running the virtual application. The source of this is unknown at this time.

The removal of large and unused files from packages will improve package performance.

Using the Package Mount cmdlet to stream large packages is now much more efficient than

runtime streaming. In previous testing against 5.0 SP1, I found there to be little difference in

mount versus stream-fault performance.

The performance issues with large files with Shared Content Store Mode enabled that were seen

in 5.0 SP1 are also now gone. In previous tests, either mounting or reading the file from the SCS

store caused massive CPU utilization by the streaming driver that remained long after the

application was done; crippling the system. The results of this test eliminate CPU usage as a

reason to avoid SCS Mode.

Because these tests are conducted on a hypervisor with no competing VMs, SCS mode will always

exhibit results that show less performance than cached mode. But such results should be quite

different in a production environment where the penalty of write IOPS caused by caching the

content to the VM becomes important.

BIG FILES AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

pg. 8

4444 Testing Strategy UsedTesting Strategy UsedTesting Strategy UsedTesting Strategy Used

This section details how the testing was performed.

4.14.14.14.1 About the Testing PlatformAbout the Testing PlatformAbout the Testing PlatformAbout the Testing Platform

The testing results depicted in this paper are based on:

 App-V 5.0 SP2 with HotFix 4 running on a Windows 7 SP1 x86 virtual machine.

The testing was performed in an isolated environment using a Microsoft 2012 R2 server with

Hyper-V. The server has 24 processors and 64GB or RAM. To minimize external impacts, this

server utilizes local storage and contains a VM with the domain controller. App-V Package sources

were located on a share on this host.

The Test VM used had 2GB of RAM and was given 2 virtual CPUs. The App-V Client is configured

for Shared Content Store mode (which disables background streaming).

4.24.24.24.2 About Test Packages and About Test Packages and About Test Packages and About Test Packages and ““““Streaming ConStreaming ConStreaming ConStreaming Configurationfigurationfigurationfiguration””””

All Test packages used are specially constructed software packages that I developed. These

packages are generally stripped down to a bare minimum, except for an overabundance of the

one particular things we want to measure when using this package. In many cases, this means

custom software that I developed for the purpose of the test.

Unless specifically noted, each package was sequenced and configured for streaming by not

launching anything during the streaming training configuration phase of the sequencer. This

means that, barring mounting operations, almost everything in the package will fault-stream

(stream on demand).

4.34.34.34.3 About Special Testing for this PaperAbout Special Testing for this PaperAbout Special Testing for this PaperAbout Special Testing for this Paper

In addition to the testing methods described in the following section, which are used for each

paper in this series, additional testing was performed.

The additional test involves running a specially written application to sequentially read the big file.

This test was performed in the same four different scenarios used in the standard testing

methods.

BIG FILES AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

pg. 9

4.44.44.44.4 About the Testing MethodsAbout the Testing MethodsAbout the Testing MethodsAbout the Testing Methods

All tests are automated using significant sleep periods before each portion of the testing to allow

all systems to settle down, and warm-up of the external components (hypervisor/fileshare) and

within the OS (App-V Client and drivers) are performed. The test process consists of

• A Test Cycle that consists of a series of Test Passes.

• Each Test Pass consists of a number of Test Packages.

• Each Tested Package is tested using a series of actions and measurements.

A Tested Package, consists of a series of actions, always preceded by a significant sleep period to

allow system background processes to settle down.

A Test Pass always starts from a freshly booted snapshot and with a dummy Test Package to warm

up the App-V Client and Driver sub-systems. The results of this dummy package are not used.

A Test Cycle always starts with a Test Pass to warm up the external components of the Hypervisor

and Windows File Share. Because the packages are relatively small compared to the amount of

memory available, the packages are likely retained in memory in the Windows Standby Lists after

the initial Test Cycle.

These are described as follows, from the bottom up.

4.4.14.4.14.4.14.4.1 Test PackageTest PackageTest PackageTest Package

For a given Test Package, the series of actions includes:

• Waiting

• Add-AppVClientPackage

• Waiting

• Publish-AppVClientPackage

• Waiting

• [Optionally Mount-AppVClientPackage1]

• Waiting

• First run (launch “cmd.exe2 /c time /t” inside the virtual environment).

1 With SCS enabled, mounting the package does result in the actual file content being stored in the App-V file cache. I

test in SCS mode both with and without mounting to better delineate the cause of performance slowdowns on a

package.
2 This is used rather than a program in the package to produce a comparable time that varies based on special actions

that the client must perform during virtual environment startup and shutdown due to the package content.

BIG FILES AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

pg. 10

• Waiting

• Second run (launch “cmd.exe3 /c time /t” inside the virtual environment).

The time required for each of the actions to complete is recorded.

4.4.24.4.24.4.24.4.2 Test PassTest PassTest PassTest Pass

A Test Pass consists of testing multiple Test Packages as follows:

• Reverting the test VM to a snapshot.

• Waiting for the Hypervisor to settle.

• Booting the VM and logging in.

• Waiting.

• A series of actions and measurements on a warm-up package. These results are never

used, it is only performed to warm up the client (client service, drivers, and WMI) and to

ensure that each subsequent package fairly tested under similar conditions.

• Waiting.

• A series of actions and measurements on the first package.

• Waiting.

• A series of actions and measurements on the second package.

• Etc…

• Recording results

4.4.34.4.34.4.34.4.3 Test CycleTest CycleTest CycleTest Cycle

Finally, A Test Cycle consists of several consecutive test runs of the same Test Pass. The first pass

is used to “warm up” external systems and achieve a relatively consistent amount of caching by

the server. The results of this pass are not used, but the results of the remaining passes are

averaged to produce results. A Test Cycle typically requires a full day to complete.

4.54.54.54.5 About the Test Results AccuracyAbout the Test Results AccuracyAbout the Test Results AccuracyAbout the Test Results Accuracy

As careful as I attempt to be to eliminate variability in the results, there is a fair amount of

variability in results between two passes.

Due to the nature of the background interruptions affecting the results, the impact on result

accuracy is felt much more on measurements that are shorter in duration than those that are

3 The client is also known to perform special actions the first time a virtual environment is used, so the second run is

used for comparison to the first run.

BIG FILES AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

pg. 11

longer. With measurements that are sub-second, this can produce results that typically vary by as

much as +/-10% from the average.

Instead, I use an approach to test with a sufficient number of test cycles and select the minimum

value seen on any of the tests. The more repetitions that are made, the better this minimum

value represents the time it takes for App-V to complete the task without the effects of any

extraneous background interference.

BIG FILES AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

pg. 12

5555 Test Packages UTest Packages UTest Packages UTest Packages Utilizedtilizedtilizedtilized

This section details the packages used in testing.

All packages used in this test, including the base package, contain a small font installer application

with a couple of shortcuts. The application is only used on the sequencer for installation; its

inclusion in the package simulates a base application and makes it easy to test to see if the fonts

are visible in the virtual package. This application is installed into the PVAD folder in each case.

This allows for the evaluation of font impacts when packages/results are compared.

To separate out the impact of fonts as files of a certain size, and impact of detection, some of the

packages have the font files present without installing, and present under a different file

extension (and without installing).

5.15.15.15.1 Lots_OfNothing (Lots_OfNothing (Lots_OfNothing (Lots_OfNothing (BaselineBaselineBaselineBaseline))))

This is a minimal App-V Package.

In developing this package, I discovered that there is an issue with the App-V Client in that there

appears to be some sort of undocumented minimal package requirements. If you create a

package with no registry entries, no files, and no integrations, the Add-AppVClientPackage cmdlet

will error out with error 700002.

Therefore this package consists of one HKLM registry key, one HKCU registry key, one text file in

the PVAD folder, and one shortcut (to the text file). Package Statistics4:

Size of .AppV File (Compressed) 26,639

Size of Central Directory 722

Size of BlockMap (Compressed) 615

Size of AppxManifest (Compressed) 793

Size of Registry.Dat (Compressed) 25,731

Number of Entries + EmptyDirectories 8+0

Number of Fonts Detected 0

This package is used to provide a baseline for general package processing.

4 Package Statistics are provided by a tool called “AppV_Manage” developed by the author. “Number of Fonts

Detected” indicates the number recorded by the sequencer as fonts in the XML files; in some cases they will not be

effective at the client.

BIG FILES AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

pg. 13

5.25.25.25.2 Sequential Read with Big FileSequential Read with Big FileSequential Read with Big FileSequential Read with Big File

This package consists of an updated version of the SequentialRead program used when writing my

book “Windows System Performance Through Caching”, along with a very large file.

SequentialRead is a utility that will read in a named file. There are options to control the read

buffer size, and to request reading in the forward, reverse, or random order. I only used a 4KB

buffer and requested reading only in the forward direction for all tests. This produces a sequential

read of the file.

SequentialRead is a standalone exe utility that does not use an installer, so when creating the

package the exe is manually copied into the PVAD folder and a shortcut is added.

The big file contained in the package is a system vhd file that is around 7GB in size. This file

compresses to around 3GB inside the package. The big file is also copied to the PVAD folder.

Package Statistics:

Size of .AppV File 3,228,749,442

Size of Central Directory 2,974

Size of BlockMap (Compressed) 4,054,911

Size of AppxManifest (Compressed) 821

Size of Registry.Dat (Compressed) 29,113

Number of Entries + EmptyDirectories 26+2

Number of Fonts Detected 0

BIG FILES AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

pg. 14

6666 Detail Test ResultsDetail Test ResultsDetail Test ResultsDetail Test Results

6.16.16.16.1 Standard TestingStandard TestingStandard TestingStandard Testing

For consistency, the standard testing used in other papers in this series was performed, however

the results of that testing was not terribly interesting as the BigFile primarily only affects mount

results.

The added Big file does have some impact on the package add and publish steps as well as when

running a cmd prompt inside the virtual environment, however this effect was fairly consistent for

all four scenarios produced results of about:

• 0.2ms per MB for the add step,

• .02ms per MB for publish step,

• .1ms per MB for the first run.

• Subsequent runs were barely noticeable in the results.

Results reported are based on an ideal test environment. Performance impacts identified

in this paper will be very different in production environments. Specific numbers are only

useful in comparison to numbers from other research papers in this series!

BIG FILES AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

pg. 15

6.26.26.26.2 Testing using the SequTesting using the SequTesting using the SequTesting using the SequentialRead program inside the VEentialRead program inside the VEentialRead program inside the VEentialRead program inside the VE

Tests were performed using the SequentialRead program to read in the big file inside the virtual

environment. These tests were also performed with and without Mounting in both the normal

caching setup and also with SCS enabled. A summary of the mount and first Run results are

shown here.

In situations where deployment performance is crucial, such as VDI scenarios, these results show

the effect that file content can have. While there may not be much you can do about it, these

results are important to understand as file portions that must be streamed affect the performance

of many of the other tests in this series of papers.

BIG FILES AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

pg. 16

6.2.16.2.16.2.16.2.1 Mounting versus StreamMounting versus StreamMounting versus StreamMounting versus Stream----FaultFaultFaultFault

The performance improvement of pre-streaming the package by mounting is different than in

prior releases. Previously, even in

the caching scenario, the sum of the

mount plus run time when

mounting was about the same as

running without caching. It appears

that work was done by the

development team to improve

mount performance in the release

that did not lend itself to improving fault-streaming.

In our test, the “BigFile” would be contained in contiguous compressed blocks, and the mount

appears to bring down the file by serially asking for each stream entry (which is a 64KB chunk that

is compressed). When left to fault-

streaming, the app is requesting 4k,

which will cause the appropriate 64k

block to be streamed. Because of

Windows file system cache read-

ahead5, the next 4k may be requested

before the compressed block received.

Thus the client must implement a

queuing method of some kind to avoid re-requesting the same compressed block again. It

appears from these tests that fault-streaming can be half as efficient as mounting.

This impact might be smaller or greater on a regular production like application package that

consumes large file I/O from the package. The application I/O pattern of such a package would

probably look more like random I/O than sequential. On one hand, this makes the ultimate

remote file-system less efficient which should cause a greater penalty for fault-streaming, but on

the other hand if the pattern avoids the queuing issue that I suspect occurs in the driver it would

help. I have not come up with a test scenario to reliably test this out.

5 See “Windows System Performance Through Caching” for an explanation.

MOUNTING THE PACKAGE, OR SELECTING

THE “FORCE” CHECKBOX IN THE SEQUENCER,

IS THE MOST EFFICIENT WAY TO STREAM

FILES TO THE LOCAL CACHE.

THESE ISOLATED TESTS SHOWED MOUNTING

PERFORMANCE TO BE ABOUT 27 SECONDS PER

UNCOMPRESSED GB, AND STREAM-FAULTING

OVERHEAD TO BE ABOUT 65 SECONDS/GB .

BIG FILES AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

pg. 17

6.2.26.2.26.2.26.2.2 SCS versus CachingSCS versus CachingSCS versus CachingSCS versus Caching

Although these results show Shared Content Store mode requiring about 3 seconds per GB more

time for either mount/run or run-

without-mount scenarios, I do not

believe that this translates into reduced

performance in production scenarios.

In addition to reduced total disk storage

requirements, SCS mode is needed to

reduce the impact of Write IOPS when a user is on a VM using centralized storage. But these tests

were designed to eliminate competing write traffic. Testing in a multi-VM production style

environment, such as would be done using LogIn VSI, would produce very different results.

Depending on the implementation of the centralized storage, user performance might improve by

enabling SCS mode. I look forward to my friends as PQR and Login Consultants publishing such

test results.

THE IMPACT OF SCS IN PRODUCTION

ENVIRONMENTS CANNOT BE DEDUCED FROM

THESE TEST RESULTS.

BIG FILES AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

pg. 18

7777 About This Research Paper SeriesAbout This Research Paper SeriesAbout This Research Paper SeriesAbout This Research Paper Series

This research paper is part of a series of papers, released by TMurgent Technologies, that

investigate the performance impacts that certain application contents can have in the deployment

of Microsoft App-V 5 packages.

Through these papers, we can better understand what areas to focus on when packaging

applications for App-V when deployment and end-user experience is important. Additionally,

with an understanding of these papers you can better target a specific package that is performing

poorly and prioritize your efforts to improve it.

TMurgent Technologies, LLP is based in Canton, MA, USA; just 17 miles south of the offices where

Microsoft develops the App-V product. TMurgent’s Tim Mangan has a long history with the

product, having built the original version at Softricity more than a dozen years ago. TMurgent is

well known in the App-V community as a source for the best training classes on App-V as well as

an endless supply of tools and information. More information is available at the website,

www.tmurgent.com

