
Connection Group Fun
with App-V 5

Examples of Solving Issues with Connection Groups

Tim Mangan

TMurgent Technologies, LLP

January, 2014

Copyright © 2014 by TMurgent Technologies

Published as a service to the App-V Community by TMurgent Technologies.

No part of this work may be reproduced without permission of the author.

Cover image attribution: Creative Commons by jccreationzs

CONTENTS

1 Introduction .. 1

2 Living without the Group .. 2

3 Think like the Client, not the Sequencer ... 4

4 Obstructing the View .. 6

5 Fool the Redirection ... 8

6 Closing .. 10

1

1 INTRODUCTION

Connection Groups are the App-V 5 equivalent of Dynamic Suite

Composition (DSC) in App-V 4, which is a way to virtualize two or more

virtual application packages and have them work together dynamically

as a single virtual application at the client.

Due to how App-V 5 is built, this can lead to having a solution to issues

unsolvable by DSC in some cases, while creating new challenges to

other combinations that previously worked well together. The purpose

of this paper is to document some ideas (approaches) that have

worked to solve a few of these Connection Group packaging issues.

More important than the technique to solve one issue, these

techniques should give practitioners ideas on how to approach many of

the new challenges when working with Connection Group.

A summary of these ideas are given here:

 There are some situations where DSC was required in the past

and Connection Groups are not needed in App-V 5.

 In some cases, you have to think backwards to build the group

in App-V 5. Rather than think about how the App natively

works when building a package that is dependent on another,

you must think like the App-V client.

 There are times when masking items is required. This can, in

some cases, be more difficult when Connection Groups are

involved.

 Sometimes the limitation of writing to VFS files must be

overcome. While this can be a problem in a single app, it tends

to be more of a problem when independent apps are grouped.

Intended Audience

This paper assumes a relatively

technical reader that has a fair

amount of prior knowledge about

how App-V 5 works, and in how

Connections Groups perform.

It does not attempt to explain things

to someone not well trained to

package virtual applications in App-

V.

2

2 LIVING WITHOUT THE GROUP

App-V 5 is less opaque than the prior versions, (some might call the old versions “overly virtualized”),

allowing virtualized applications more ways to locate each other in scenarios where sharing of virtual

environments was only required to enable one to launch the other.

Additionally, the new extensions in App-V 5 add new ways for apps to find each other that were blocked

in App-V 4.

If the apps do not really share virtual components and any necessary data files live outside the virtual

environment, sometimes you can get away with removing the grouping.

This tends to be useful only when the two packages are genuinely independent, with one of the

packages starting an exe in the other package through an extension point or just launching it using the

path variable.

Once in a while, these DSC combinations that were needed in App-V 4.* can be solved by just

sequencing each package independently and testing.

In one situation, all that was needed was to add an “APP PATH” for the executable in the package that

must call the second package. To make this work, the App Path would point to the client location where

this would be found:

While this solves the problem without harming Package B when Package A is not present, it does create

a dependency inside Package B to the version GUID of Package A that is not obvious and must be well

documented. Fortunately the linkage is exposed and modifiable in the Package B DynamicConfig XML

file without reopening the package

Package A includes an executable named “bar.exe”. The file is installed to a sub-folder named

“Floc” under the Primary Virtualization Application Directory (PVAD).

Package B includes an executable named “foo.exe”. Foo needs to launch bar.exe, if present,

when the user invokes some application feature. Foo passes a file from the user’s documents

area as part of the command line, but foo does not require any virtualized components of the

bar package.

When packaged separately, foo cannot locate bar. Using the new App Paths extension point,

we can add an AppPath to the foo package. The value name would be “foo.exe” and the

value data would be the path to the folder containing bar.exe as the client would place it,

when present. This typically would be “C:\ProgramData\App-V\{Package A ID

GUID}\{Package A Version ID GUID}\root\Floc”.

3

Of course another form of living without the connection group still exists and should not be forgotten –

just create a single sequence of both applications. While sometimes this is not possible, if you are

struggling with getting a Connection Group to work you should consider this approach.

4

3 THINK LIKE THE CLIENT, NOT THE SEQUENCER

When creating DSC groups for a package with a dependency on another package, it is necessary to think

like the sequencer works. This includes situations of sequencing a plug-in that is dependent on a main

application, or a package that uses another package as middleware (like a Java package).

The technique used to generate the second package involves creating a sequencer environment that

mimics the state of the sequencer when the first app was sequenced. Originally, this meant doing a

native install of the dependent app on the sequencer the same way it was sequenced. Later, Microsoft

added the ability to use the sequencer to expand the dependent package for us, laying it down the way

it was sequenced. Often, this approach will work fine with App-V 5 Connection Groups. But not always.

Most applications that actively support plug-ins locate the plug-ins one of two ways. Either the plug-in

drops a dll in a specified location or it adds a registry item under a specified key that contains the path

to the dll.

Those that use the registry method seem to work pretty well. When the file/folder method is used, this

can be a problem depending on how the application locates that folder. Most of the time, the

application will determine where the folder is located by first determining where it was installed from

the registry, and adding a folder offset to that path. When the dependent app was installed in its PVAD

folder, this should work. It will see the PVAD folder name, and plug-in package overlays on top of that

using a VFS path.

In one case, the app used the folder method, but located the folder by applying the relative path to the

current working directory. At the client, this is not the PVAD folder where installed (which ultimately is

a junction point) but instead the app will see a current working directory of something like

C:\ProgramData\App-v\{GUID}\{GUID}\root. If the plug-in was created by expanding the dependent

package, the plug-in files will not be seen in the expected location. Attempts to solve this by VFSing

everything also fail.

The solution lies in creating the plug-in package in an environment that mimics the client

environment instead of the sequencer.

After creating the dependent package, the sequencer is reverted and the package is natively

installed to C:\ProgramData\App-V\{GUID}\{GUID}\root.

Then the plug-in is sequenced using a C:\PluginName PVAD with the plug-in files added where

the native installed dependent package expects them. These files are therefore VFS’d to

overlay exactly where the executable at the client will look for them.

5

This is the solution I used to get Connection Groups to work for plug-ins to Paint.Net. Once again, the

plug-ins have a dependency of the dependent package id and package version, but here there is a

connection group that should help to identify the dependency via management consoles.

It is also possible to use the Package GUID publishing junction point when performing the dependency

native installation prior to sequencing the plug-in. This requires prior knowledge of how the dependent

package will be published, as this junction point is in a different location when published globally or to

the user. If this is well known, using this junction point would eliminate the dependency on the

dependent package Version ID GUID allowing the dependent package to be independently upgraded

without breaking the plug-in packages.

Ideally, it might be nice is the sequencer had an option to expand to local system like the client

(however, this should NOT be a replacement of the current expand to local system).

6

4 OBSTRUCTING THE VIEW

There are times when it is necessary to obstruct the view of either real or potential data objects (folders,

files, registry keys, or registry items) that appear in a lower layer. We run into this more often with a

single package than in Connection Groups, but it turns out that the packages where this is needed are

often part of a connection group anyway.

Often, what we want is to block the virtual application from seeing something that might be present in

another form on the native system, but the technique is equally effective to block one member of a

connection group from seeing another member.

There are two forms of blocking supported by an App-V package:

 One used when a package includes files or registry items under a given folder or key and that

folder or key might exist in in a lower layer package or the native system.

 One used when a package does not contain a replacement but wants to hide the existence of a

potential file, folder, registry key, or registry item.

The first form is usually automatically taken care of by the sequencer. When creating the package, the

sequencer marks a custom property on Folders and Registry keys depending on how that Folder/Key

came to be captured as part of the package. If the Folder or Key was created new during the

monitoring, the item property is set to “Override Local” and if was indirectly captured because the

Folder/Key already existed on the system but something below it in the file system or registry system

was captured and it is coming along for the ride the item property is set to “Merge with Local”. Inside

the sequencer editor (the multi-tabbed interface) you can see this settings by right clicking on the

folder/key. This is sometimes referred to as the Transparency (or Pellucidity) of the item and you can

change the property setting in the sequence editor.

The logic of the default behavior of the sequencer is that normally you want the package to see sub-

items of a folder/key for normally present system sub-items. So if the package indirectly captures the

Windows\System32 folder because a new dll was added in the package, the folder is marked “Merge

with Local” so that the virtual application can also see and load additional dlls from that folder that are

present on the end-user system. But if the app creates a new folder (such as C:\Program Files\Common

Files\VendorAndAppName) we usually want to hide any presence of a different version of that app that

might be locally installed.

The second form of blocking is not (currently) visible in the sequencer, so many people are less familiar

with it. But while the sequencer is monitoring for changes, if a pre-existing file or registry system item is

removed, a placeholder is added to the package with a custom deletion marker property. At the client,

this is a indication that should the item be actually present at the client, it should not be visible to the

package.

7

So far in this chapter, I have described the behavior of one package and the client. It turns out that the

situation gets far more complicated when you involve connection groups. When connection groups are

involved, the client behavior is sometimes different depending on whether the situation involves the file

system or registry system.1 Most of the time, these differences are not important, however if when you

use pellucidity or deletion markers in a connection group and do not get the behavior you expected, you

should consult a paper that I previously wrote called “Pellucidity and Deletion Objects”

(http://www.tmurgent.com/appv/index.php/resources/research/172-pellucidity-and-deletion-objects-

in-app-v-5). In this paper I publish the results of a long series of tests detailing the results of all possible

combinations of the local client and a connection group consisting of three packages. If your situation

runs afoul due to the combination not doing what you expect, it should be possible to move the marker

to the first or last package in the group (potentially a new dummy package consisting of only the

marker).

1 I cannot find a good reason for the differing behavior and attribute the difference to different development
teams making separate choices on how to handle unusual potential situations that probably rarely occur.

A great example of using blocking via deletion markers is sequencing a particular version of Java.

Sometimes applications require one particular version of Java, but Java was designed to automatically

locate and use the latest version installed in most cases. This is done by detecting the presence of

additional registry sub- keys of the newer version.

So we might sequence version X of Java (or make a connection group containing a package

with version X) and the client might have version X+1 natively installed, so the application

would end up loading version X+1.

Aaron Parker wrote up a technique (see http://stealthpuppy.com/juggling-sun-java-runtimes-

in-app-v/) to hide all other known versions of Java as part of your Java package. Unfortunately

your Java package may need to be re-created when a newer version of Java becomes available

to add the additional deletion marker, but the technique is well described.

The technique involved pre-creating the registry keys we want to block prior to starting the

sequencer, and then deleting those keys as part of the Java package. So even if those versions

are present at the client, they will not be seen.

http://www.tmurgent.com/appv/index.php/resources/research/172-pellucidity-and-deletion-objects-in-app-v-5
http://www.tmurgent.com/appv/index.php/resources/research/172-pellucidity-and-deletion-objects-in-app-v-5
http://stealthpuppy.com/juggling-sun-java-runtimes-in-app-v/
http://stealthpuppy.com/juggling-sun-java-runtimes-in-app-v/

8

5 FOOL THE REDIRECTION

One of the issues we have that is new to App-V 5, whether you are using a connection group or not, is

dealing with apps that need to write files outside of the AppData area. Unlike App-V 4.*, at the client

the virtual application in App-V 5 cannot write to locations that are in the VFS map of the package. This

behavior is almost well defined in the Microsoft App-V 5 SP2 Application Publishing and Client

Interaction guide2. Many times, we can solve this new issue by getting this by making this location be

within the PVAD folder.

When you bring connection groups into the picture, if the two apps both have this kind of behavior, in

two different “fixed” folder locations, such a fix might not work. The same would be true if a single app

package had multiple “fixed” locations to installing to a subfolder of the PVAD can’t keep at least one of

the locations from being in the VFS.

To solve this, we can add our own Junction Points inside the package. Yes, junction points do virtualize!

To make this simple to explain, I will stick with the single package scenario, but once you understand this

you can expand it to the multi-package connection group situation as well.

2 http://www.microsoft.com/en-us/download/details.aspx?id=41635. This guide provides good examples of Copy-
On-Write behavior and is well worth reading; unfortunately it is not a complete description of the COW behavior in
all cases. You may want to search the download center for the latest version (leaving out the SP2 part of the title)
in case the product interaction behavior changes in the future and/or is better described.

In one case, an app (which did not require a connection group) needed to overwrite a file that the

installer always placed in C:\ProgramData\VendorName\Subfolder.

This app was solved by using that folder as the PVAD. Because this was a simple app and it only needed

to write to this one location, it wasn’t important where we actually installed the app to inside the

sequencer. Typically I would probably install it under a different subfolder under the PVAD to keep

within Microsoft guidance.

http://www.microsoft.com/en-us/download/details.aspx?id=41635

9

The idea of using your own junction points to redirect file locations to different places can be used in

many different ways. You could redirect a single file to be outside the bubble. If you are willing to set

the Group Policy Object to change the OS default limitation of not following local to remote junction

points, you could even place the folder or files up on a commonly accessible file share.

These ideas might not only solve rights issues, but could make it easy to update a package data file

centrally rather than rev the package. Sometimes home-grown line of business apps have a data-file

that updates on a frequent schedule (such as once a month) without changing the app itself, and

expects the file to be local. If the app always opens the file for read-only, sequencing the junction point

to redirect to a share location makes it easy to update the app without repackaging or performing any

publishing. Care would be needed in swapping the file out on the share, and either an app maintenance

period would be needed or a secondary junction point on the share could be used (if the GPO is set to

allow remote-to-remote junction points) to avoid the maintenance window.

A large application had needs to write to two different fixed folder locations. After setting the PVAD to

one of these fixed folder locations, we still had VFS write issues with the second location. Here is how

that was solved.

The PVAD was set to the first location and the product installed to a subfolder of the PVAD. After

installing the product, and still in monitoring mode, the second fixed folder was moved to an additional

subfolder of the PVAD. Then a directory junction point was created in the location of the original fixed

folder location pointing to this new location (using the mklink command in a new command window).

The Junction point was captured as a VFS location, but when the application tried to use a path starting

with the second fixed path, the VFS brought in the junction point, which then redirected to the location

under the PVAD. This in turn, hit the PVAD junction point that then referenced the redirected location

under C:\ProgramData\App-V\{GUID}\{GUID}\root

When an application opens a file that passes through a junction point, the file handle opened is actually

to the redirected location path, not the path the application requested. To the App-V client, this then

looks like a PVAD file and allows the write (further redirecting the actual write to the Copy-On-Write

area of the user’s AppData.

10

6 CLOSING

Of course, none of these techniques should be used unless necessary. Each has some drawbacks that

need to be weighed against the benefit. Sometimes this will make sense to use these techniques, others

maybe not.

