
Microsoft App-V 4.5
Client in Stand-Alone Mode

June 17, 2009

Tim Mangan

TMurgent Technologies

Abstract

With the release of Microsoft Application Virtualization (App-V) 4.5, enterprises have three major

deployment models available to them for virtualized applications:

 Using a Server Infrastructure dedicated to streaming virtual applications

 Using a Server Infrastructure shared to deliver OS Images, Virtualized, and Non Virtualized

applications.

 Using the Stand-Alone Client, with or without a backing File Server.

This White Paper focuses on this last option, and introduces usage that we find very useful, even when

an enterprise chooses to implement one of first two options. There are two methods for deploying with

the stand-alone client addressed in this paper.

The paper first describes the usefulness, and methods for

using the stand-alone client as originally documented by

Microsoft. This is typically considered for supporting a very

small number remote users, typically with poor network

connectivity to a main site. We extend this use case with a

second use, using this deployment method as part of our

recommended Sequencing (virtual application preparation

phase) practices.

The paper then describes a potential full-scale deployment using the stand-alone client in conjunction

with file streaming. Importantly, used in this manner, virtual applications may be upgraded without loss

of user personalization and customizations.

Finally, the paper describes a method we use to customize the MSIs generated by the sequencer.

Stand-Alone Client without Streaming

Microsoft first introduced the stand-alone client mode in a hot-fix rollup release of version 4.2. Along

with the ability for the client to operate without a back-end server, Microsoft created a different way to

deliver the virtualized application to the client running in this mode. This involved creating an MSI

package for the virtual application when sequencing. This MSI, along with the SFT file, would be used by

the client to add the virtual application to the App-V client and fully populate the cache. The MSI would

be run on the client, which would create the application access shortcuts and file associations on the

underlying PC. These shortcuts and associations make the application appear as if installed, but instead

instruct the App-V Client to launch the virtualized application instead. The MSI would also fill the App-V

“When configured without streaming,

the stand-alone client is, in our

opinion, the best setup for the initial

test of a newly sequenced

application.”

Tim Mangan, TMurgent

file cache with the complete SFT file. In 4.2 the MSI creation

was a separate tool run after sequencing. Microsoft’s intent

with this was to provide virtual application support to one-off

situations where network connectivity to a server infrastructure

was assumed to be of too poor quality or nonexistent.

In the 4.5 release, Microsoft integrated the MSI generation

directly into the sequencer. When sequencing, this extra MSI

file will be generated if the appropriate checkbox is selected

when sequencing. At TMurgent, both in our own practice and

in the Masters Level App-V classes we teach, we have made it a

standard practice to generate the MSI with every sequence we

create.

In addition to the use case outlined by Microsoft, we incorporate the stand-alone client without

streaming into our sequencing practice. We have found it much more productive for the initial, or

“smoke test” of a newly virtualized application to be performed on a stand-alone client. The person

sequencing only needs a couple of virtual machines, one for sequencing and another for testing.

Productivity of the person sequencing increases because no back-end infrastructure is required, and no

need to log onto yet another machine to use the management consoles.

When sequencing an application for the first time, it is typical to need to take several passes through

this sequence-test phase. We recommend in our classes that even if everything works perfectly in the

first pass, that documentation on how the applications was sequenced (sometimes called recipes1) be

created/updated and the application be sequenced from that documentation. While testing with the

stand-alone client does not fully test everything that a full test deployment (using a client with the

dedicated server using RTSP/S or with the shared SCCM server) would accomplish, we find that initial

testing in this mode to be extremely productive. We follow-up this testing with a more complete test

system that more closely mimics the production environment. It is in this full test deployment that we

bring in a designated “application expert” who has sufficient knowledge to test and approve the virtual

application for production deployment.

1
 I coined the term “Recipe” for this documentation when I was the Vice President of Technology at Softricity when

we built the original SoftGrid product. The recipe was a step-by-step procedure that anyone adequately trained in
sequencing could reproduce. I created a group at Softricity to publish recipes for applications just before I left the
company. Subsequent to that time the company, and now Microsoft, have preferred to use “Prescriptive
Guidance” documents which detail issues with virtualizing an application and a work-around for each issue. Such
guidance requires significant interpretation and does not lead to reproducible results. Thus, most companies
create their own recipes for their internal use and the term has survived.

Using App-V in stand-alone mode

really highlights what App-V does.

Although you “install” an MSI file,

what is really being installed into the

OS is only the shortcuts to launch

the application plus file-type-

associations that create alternative

ways for the user to launch the

application. The application itself is

still fully virtualized. The other

implementation modes do the same

thing; it’s just that they don’t use an

MSI to do it.

The beauty of the stand-alone client is that there is no need for any back-end components. While the

reality is that you will store the images on a file share somewhere, you are free to distribute applications

to users through any method. This includes ANY traditional Electronic Software Distribution (ESD)

system (SMS, Altiris, SCCM, etc), putting it on a DVD and mailing it, or allowing access to the file share

directly.

There are some limitations to using the client in this way, which you need to be aware. First, you cannot

mix and match client modes between applications. If you want to use the client in stand-alone mode,

then it will not contact the Application Virtualization Server (RTSP/S). Second, without streaming you do

not have the ability to update an application once it is “installed”. An update means uninstalling the old

and installing the new. User preferences are lost in that process.

Setting up the Stand-Alone Client for use Without Streaming

We find it easiest to set up the stand-alone client using a script. Repackaging of the App-V Client MSI for

silent installation is also a possibility, however we prefer to use the setup.exe provided by Microsoft as it

ensures that several pre-requisites are installed on the client and adds them if needed. Below is a single

line CMD script that we use in some cases. As no fancy scripting tricks are in use, such a script is easily

modified to whatever scripting language you prefer.

An explanation of this command line, such that you can make modifications as desired, follows.

Item Meaning

/s Setup.exe is generated by InstallShield. The /s
option makes the setup.exe portion of the install
run in silent mode, eliminating dialog prompts.

/v”…” The /v option makes the setup.exe extract out an
imbedded version of the MSI file and run msiexec
against this MSI with whatever is inside the
following quotation marks as command line
arguments.

Setup.exe /s /v"/qn SWICACHESIZE=\"12144\" SWISKIPDATASETTINGS=\"false\"

SWIGLOBALDATA=\"C:\AppVirt\Global\" SWIUSERDATA=\"^%APPDATA^%\"

SWIFSDRIVE=\"Q:\" REQUIREAUTHORIZATIONIFCACHED=\"0\"

ALLOWINDEPENDENTSTREAMING=\"1\" AUTOLOADONLAUNCH=\"0\"

AUTOLOADONLOGIN=\"0\" "

Items within these quotation marks sometimes
need escaping for setup.exe to properly interpret
them. For example, any quotation marks must be
preceded by a backslash. Also % characters must
be preceded by a ^.

/qn Instructs the MSI portion of the install to be
performed in quiet mode, with no reboot. (A
reboot is only needed if a client upgrade is being
performed).

SWICACHESIZE Sets a fixed maximum size for the sft cache in MB

SWSKIPDATASETTINGS Seemingly required for other SWI to be
interpreted

SWIGLOBALDATA Optional. We use a known location so that testing
on WinXP and Vista use the same location in case
we need to troubleshoot.

SWIUSERDATA Optional. In this case we are only showing how to
reference an environment variable.

SWIFSDRIVE Optional. Again this is the default value anyway.

REQUIREAUTHORIZATIONIFCACHED Turns off client need for app authorization.

ALLOWINDEPENDENTSTREAMING Enables the client to receive the SFT without a
publication server.

AUTOLOADONLAUNCH Turns off new background streaming.

AUTOLOADONLOGON Turns off new background streaming.

Using the Stand-Alone Client Without Streaming

Once the App-V client is installed this way, the MSI and SFT that are output by the sequencer must be

made available. These can be copied to the client system through any method (email, USB or CD/DVD

device, etc) or be made available on a file share or mounted drive. While it is possible send the MSI and

reference the SFT remotely, we prefer to keep these two files in the same place.

The MSI is then run. By default this will display a multi-page dialog which the user just clicks through

without any chance of customization. The MSI will check that an appropriate version of the App-V

client is present and configured, and that this virtual application is not already “installed”. It is necessary

to use the control panel feature (called “Add/Remove Programs” or “Programs and Features” depending

on the version of the operating system) to “uninstall” the old version if the same package name/GUID is

used.

The MSI built by the sequencer includes the ICO and OSD files needed by the client, as well as the

_manifest.xml file. It does not include the SFT because the MSI format has a hard limit of 2GB for

embedded files. Because some SFT might exceed this limit, Microsoft decided to always keep the SFT

external. (A decision I do not agree with, but then again I don’t run the world).

It is important to note that the application publishing information (details about the virtual application

shortcuts and file type associations) are duplicated both in the OSDs and in the _manifest.xml. While

the dedicated server reads this information from the OSDs, clients in stand-alone mode (or configured

for delivery via SCCM) read this information from the _manifest.xml. This has important implications to

manual editing of publication information. Any manual edits post sequencing should be made to both

files (and of course re-opened in the sequencer so that the files internal to the MSI are updated).

The MSI will unpack the embedded files in a new subfolder in the global area, and use the client

SFTMIME command to add the package to the client. The client will then cache the OSD and ICO files in

the global area. When adding the package using the SFTMIME command, it will use the /GLOBAL option

which applies the publishing to any user logged onto the computer. This has implications to shared

computer systems such as a Terminal Server or “hotdesk”. Since only a user with administration

privileges can usually install an MSI and the client has no server to provide per-user authorization, using

the /GLOBAL option is used to make the virtual application available to all users of this computer.

Finally, the MSI will load the SFT cache with the contents of the SFT. Whether or not the package was

sequenced with both feature blocks, the entire SFT will be cached. Note that it is necessary to ensure

that the stand-alone client cache be sufficient size. Should the maximum size be reached, old bits will

be pushed out of the cache (based on least recent usage), potentially breaking the old application as the

client is configured in a way that it cannot locate the original SFT to refill the cache. This is usually not

an issue for the sequencer test station, but is a concern for production stand-alone use.

Stand-Alone Client with File Streaming

Poorly documented and understood, is another way of configuring the App-V Client, for stand-alone

operation with File Streaming. We believe that this mode has interesting production use possibilities

due to the combination of benefits and restrictions it imposes.

We are currently unaware of any customer using this option in production, we believe this to be due to

the lack of documentation and understanding (leading to this white paper). We regularly use this in our

labs and are happy with the results.

Use of the Stand-Alone client without streaming has two limitations addressed by use in this mode:

1. The inability to update a virtual application without the user loosing their

preferences/customizations.

2. The inability for the client to recover from a too-small sft cache file.

The beauty of the stand-alone client is the absence of any back-end servers. In practice, you still will

want to store the original sequenced package somewhere. You still need to have the MSI and SFT

available to distribute to stand-alone clients and you want to retain the other files so that you can re-

open the package in the sequencer for the future.

By making this folder and contents available as a read-only file share, configuring the stand-alone client

to support file streaming, and installing the “virtual applications” on this client differently, we solve the

two issues listed above. This enables us to achieve more of the important benefits of the client in

RTSP/S or SCCM mode than we could before.

Furthermore, we can add any push style deployment tool, such as SMS or third party tools, to push out

the virtual application MSIs to the client with a script. We find many customers that use SMS (or other

tool) today and are reluctant to move to SCCM R2 to deliver virtual applications because the change

would have such a large impact on their operations.

Setting up the Stand-Alone Client for use With Streaming

The script we use to set up the client in this mode follows:

The small change to AutoLoadOnLaunch instructs the client to re-fill anything for this application that

was pushed out of the cache when the user launches the application. While technically not needed, we

prefer this setup. It is in “installing” the virtual application package that we use different procedures to

achieve the benefits of streaming.

Setup.exe /s /v"/qn SWICACHESIZE=\"12144\" SWISKIPDATASETTINGS=\"false\"

SWIGLOBALDATA=\"C:\AppVirt\Global\" SWIUSERDATA=\"^%APPDATA^%\"

SWIFSDRIVE=\"Q:\" REQUIREAUTHORIZATIONIFCACHED=\"0\"

ALLOWINDEPENDENTSTREAMING=\"1\" AUTOLOADONLAUNCH=\"1\"

AUTOLOADONLOGIN=\"0\" "

Using the Stand-Alone Client With Streaming

When working with a client in this mode, we prefer to keep the

MSI and SFT assets stored in a central file share and do not

copy them to the client workstation. We also make a copy of a

script that will be used to perform the virtual application install,

modify it to reference this specific package and place it in the

same folder on the server share. Again, this script could be

used as part of a push technology (SMS, etc) to automate the

install centrally. Below is an example cmd script version.

We can edit the script to replace the reference names for the

msi and sft and deposit the copy in the folder with those files to

keep this script simple. In practice, a smarter script would be employed that scans a given folder for the

msi and sft names; we are showing this script to avoid specific scripting language issues in this paper.

When run, this script will run the msi from the file share. As in the case of running it without streaming,

the _manifest.xml, OSD, and ICO files are unpacked into a sub-folder of the global area. SFTMIME is run

with the global option against the manifest, however due to the MODE=STREAMING option, the client is

being instructed to check the source sft each time the application is launched for potential updates. The

source will be on our file share (as indicated by the OVERRIDEURL). The LOAD=TRUE option simply tells

the MSI to load the application 100% into the cache immediately after adding the application. The use

of the /q option makes this install complete silently.

When the application is added in this way, we can now update the package on client systems without

loss of personalization/customizations or the need to touch the client system.

msiexec.exe /i

\\Roadhog\Content\DSC\IE\Tim_DSC_IE_BASE_FOR_PLUGINS_iebase.t33\Tim_DSC_IE_BA

SE_FOR_PLUGINS_iebase.t33.msi MODE=STREAMING

OVERRIDEURL=\\\\Roadhog\\Content\\DSC\\IE\\Tim_DSC_IE_BASE_FOR_PLUGINS_iebase

.t33\\Tim_DSC_IE_BASE_FOR_PLUGINS_iebase.t33.sft LOAD=TRUE /q

A better script that does not require

editing can be found in the tools

section of our website at

www.tmurgent.com . This VBscript

will take a command line argument

of the MSI file on the file share, or

will prompt you for that file. The

script will parse the files in that

folder to determine if there are any

Dynamic Suite Composition (DSC)

dependencies and warn you if there

are any before performing the

install.

http://www.tmurgent.com/

Updating Applications on Stand-Alone Client with Streaming

When it comes time to update an application deployed in this way, we can use the sequencer to open

the package. The process on the sequencer is the same as it would be for any deployment model: Open

for Upgrade, run the Sequencing Wizard and update the application, then save.

This produces a new sft file with a new name. By default, the sequencer would add an _2 to the

basename of the SFT (or replace an _N with an _N+1, such as _3) each time. When deploying with

either of the server models, this file is used with this name, and changes are made on the server to

redirect the client to use the new name.

UNDERSTANDING OSD SOURCE, ASR, AND

OVERRIDEURL

The OSD file contains an HREF reference to the SFT file in the form of

PROTOCOL:\\Server:port\Path\Sftfile.sft”. In a traditional dedicated server setting this would

look something like “RTSP:\\%SFT_SOFTGRIDSERVER%:554\Vendor\Package\Package.sft”.

When a user launches an application from a shortcut, the OSD is read and this reference is

used unless…

If the Windows Registry of the client has a value for ASR, this will override the

“PROTOCOL:\\Server:port portion of the OSD. This ASR is a single setting for all applications

and all users on the client PC. Unless…

Additionally, if the Windows Registry of the client has a value called OVERRIDEURL for this

application (shortcut), this will override the entire HREF of the OSD.

In summary, the client will look for an OVERRIDEURL, and if none then look for an ASR, and if

none use the OSD as is.

In our case, however, we will need to modify the filename to be the same as the original sft. Although

App-V clients open this file in read-only mode, and then only for a short while, we recommend only

overwriting the server share copy (after backing it up, of course!) during a time that clients are less likely

to be launching the application, such as nights or weekends or designated maintenance windows.

Upon the user requesting to launch the application, the client will check datestamps of the sft and re-

stream for updates if needed. Because this is file streaming, the entire new sft will be streamed down2.

This might make Stand-Alone with Streaming less useful for poorly connected clients but we are still

bullish about this mode for both central site and branch deployments.

To avoid the need to rename the updated sft file, we note that the sequencer has an option setting to

turn on the version renaming. If the application is only deployed by stand-alone client with streaming,

you could turn off this feature.

Limitations

In this section, we address what we see as the limitations of deploying in this mode.

1. We are concerned with overwriting the existing SFT due to potential client issues, but have not

seen this to be a problem. Thus we urge caution in deciding when to deploy the updates. We

have not tested, but suspect that we could place the _2.sft file on the share and then push out a

script to the client to modify the HKLM registry reference to the application “original source” to

point to the new name for the next time the user launches. This would be safer in those

environments with a good push technology present. Because this involves changing an existing

registry value, we do not believe GPOs to be an effective solution for this push.

2. In the case of an application package being updated that affects publishing information, we

would recommend saving as a new package, “uninstalling” the old virtual application, and then

“installing” the new. Changes to shortcut locations and file type associations, or even entirely

new OSD applications entry points are not updatable using the process we outlined in the

previous section.

3. Features of the Dedicated Streaming Server are not available. This includes features such as per

user authorization, metering, and licensing. But this is no different than the regular stand-alone

client or using the client with SCCM R2.

4. Installing the virtual package normally requires admin rights. If you are not pushing out using

ESD, consider how users will be able to run an installer. If you are using a file share and pointing

users to it, we note that it is possible to achieve some level or authorization for the “install” by

2
 In the 4.5 RC version, Microsoft had an option to produce a DFST file that contained only the changes from the

original SFT. This feature was dropped in the RTM release and it is unclear if it will be included in a future release.
If it is, it is currently unknown as to how we would be able to direct the client to the DSFT file.

utilizing ACLs and Active Directory group assignments.

These ACLS would be placed on the SFTs and MSIs

(denying read access to these files)

5. The MSI “installs” using the /GLOBAL flag of sftmime.

This means that if this is a shared computer, all uses on

the machine will have the application published to

them. If an admin performs the install, loading the SFT

into the cache, server side ACLs will not help. Instead,

the application would need to be sequenced with ACL

support enabled and internal package components

protected. We do not particularly like this approach as

the user would launch the virtual application and then

get an application file permission error which would

appear differently on different applications.

We also note that we look with keen interest at AppLocker, to be released as part of Server 2008 R2

and Windows 7 as a possible future authorization methodology. Unfortunately, these products are

not yet released and the implementation is not extended to clients running older operating systems.

Third party equivalents do exist today (Tricerat Simplify Lockdown comes to mind) however these

products have not been widely deployed to date.

Modifying the Virtual Application Package MSI

The sequencer uses an MSI file as a template for the output MSI produced by the sequencer. We have

had success in modifying this template for both cosmetic and practical purposes.

Using an MSI re-packager, (such as Ocra,

Camwood, Acresso, or Wise) we can open

the template MSI and make modifications.

Our template usually modifies the graphics

and text for when someone runs the MSI

manually. We like to change the wording

of things like “install” to make it clear that

it is a virtual install and not a regular install.

It is possible to alter the behavior of

the MSI. The sequencer uses a

template MSI to build the final MSI.

We have successfully created a

modified template and replaced it

on our sequencer. In addition to

altering the graphics, we changed

the wording (to remove the word

“Install”) and added a new

command line option to the

resultant MSI that allowed the

package to be added without the

/GLOBAL flag.

The other change our template has is that we add a command line option such that the MSI can be

installed with a /NOGLOBAL option, in which case the SFTMIME command will be run without the

/GLOBAL option. This means that only the user running the install will have the shortcuts published to

their desktop account. This might be useful in some shared use situations, however keep in mind that

the user still needs install rights.

We believe that it should be possible, with sufficient effort, to create a template that would publish to

some kind of pre-determined list of users. We have not done the work for this because ultimately we

believe that client changes to check for list changes over time would be necessary. Thus, for now we

recommend that customers needing per-user application publishing on multi-user machines stick with

the Dedicated Server infrastructure.

We should also note that the MSI is nothing more than a convenient wrapper for a script that runs two

sftmime commands. The truly ambitious could roll their own stand-alone deployment system to clients

in stand-alone mode without resorting to MSIs.

Conclusions

In addition to the poorly connected user scenario described by Microsoft, we find the stand-alone client

useful in two different scenarios.

First, the stand-alone client is the ideal way to quickly test a newly sequenced application before

sending it to an “application expert” to verify operation.

Second, when configured with streaming and combined with an existing push technology, the stand-

alone client creates a third style of enterprise deployment model for virtual applications. This model

consists of the least number of dependent back-end components and provides for flexibility of using any

push technology that the enterprise already uses. Furthermore, the benefits of this mode appear to be

“on par” with those provided by deploying through SCCM R2. While there may be additional benefits to

using SCCM R2 beyond virtual applications, we do not see any if your interest is only in virtual

applications.

Finally, nothing can replace the full benefits of using the dedicated server approach. Application

metering and per user authentication and licensing are only available through the use of RTSP/S.

Customers requiring this support should stay with the dedicated server infrastructure for production

use.

