

WHITE PAPER

HHHyyypppeeerrr---TTThhhrrreeeaaadddiiinnnggg aaannnddd
MMMuuulllttt iiippprrroooccceeessssssooorrr SSSyyysssttteeemmm

PPPeeerrrfffooorrrmmmaaannnccceee
OOONNN SSSEEERRRVVVEEERRR 222000000333

Should you enable Hyper-Threading?

June 25, 2003

TMurgent Technologies

ABSTRACT
�

Recent processor developments include concepts such as adding multiple
"logical" processors on a single die, often providing seemingly two separate
processors, which share some components on the chip. Intel’s Pentium Xeon
processor family introduced this concept as Hyper-Threading.

Due to issues with operating system support, especially in the area of product
licensing, most technologists (including those at Intel) recommended disabling
the feature when it first started appearing in systems. As a result, this
technology is not well understood.

This paper looks at Hyper-Threading in a multi-processor system, specifically
with the Windows Server 2003 Operating System with an eye to making a
recommendation to customers running such servers as to whether the feature
should be enabled or disabled. Observations made in this paper do not reflect
results under the Server 2000 operating systems.

The paper also takes a look at the benefits of using our TMuLimit product with
Hyper-Threading enabled or not.

Ι Numerous references to names and trademarks of the following companies appear in this document:
Intel, Microsoft Corporation, TMurgent Technologies, Dell, and Citrix Systems.

I NTRODUCTI ON

Moore’s Law1, pontificated many years ago, held that semiconductors would
double in density every year. This doubling of capacity has led to the doubling
of the performance of processors every year since. Few expected that trend to
continue as long as it has. Of course, developments in software to use these
faster procesors have continued to keep pace, causing performance to continue
to be an issue.

Over the years, advances in processor designs have certainly dramatically
increased the processing capabilities of the central processing unit. Most of this
increase has been the result of shrinking the size of the designs, allowing clock
speeds to increase so that a single instruction occurs faster. The speeds
involved are so fast, that the time to execute a single instruction (or more
properly, a single micro-instruction) is becoming less of an issue. Chip advances
today include expensive strategies to get the instructions to the execution unit
for execution. This includes concepts such as multi-layered memory caching and
pre-fetching, pipeline re-ordering, and branch prediction.

We do not intend to cover these detail here (Intel makes some excellent
references on these topics available on their web site [Ref 1]), however we do
want to convey that processor performance today is increasing more about
making sure that the execution unit of the CPU is constantly doing something
useful. This is what Hyper-Threading is all about.

The CPU today is a complicated beast. Rather than think of it as executing an
instruction, it is best to consider a stream of activities that occur to execute
instructions for the current software thread. Actions of various portions of that
stream will be worked on at any given moment. We can simplify this into three
phases as is shown in Figure 1 below.

Figure 1 - Phases of instruction execution

In the Instruction Preparation phase, instructions are chosen. I f they are not in
the local cache, they are obtained. I f they refer to data that is not in the cache,
that is also taken care of. Instructions may also be chosen outside the natural
order of execution, if that makes sense. Complex instructions are broken down
into their micro-instruction components.

1 Gordon Moore, co-founder of Intel, is credited with making this observation in 1965 [Ref 7] while at
Fairchild Camera and Instrument Corporation. His estimate that the capacity of semiconductors would
double each year (while cost per transistor would half) would last for ten years has been far extended.

Instruction Preparation Execution Result Handling

Hyper-Threading involves adding the ability to handle a second stream (program
thread) in parallel. To contain costs (both power and money), not all
components are duplicated. Working from the earlier figure, the current Hyper-
Threading solution might look like shown in Figure 2 below:

Figure 2 - Phases of execution in Hyper-Threading

A much more technical, and accurate, depiction of Hyper Threading is [Ref 2] .
The shared execution stage will alternate between streams, unless one of the
streams is not ready (for example due to a L2 cache miss).

Intel is quick to point out the advantages of this strategy. In keeping the most
critical phase "fed", the overall performance can be improved. At least with the
2003 OS we tested, the "idle task" that would be running in the second logical
processor has a minimal impact.

The flip side of those advantages occurs due to the separation of the OS from
the logical/physical processor alignment. This can cause the OS to assign two
active threads to logical processors on the same physical processor while other
physical processors are dormant. I f this second thread were placed on a
separate physical processor, the execution of each thread would be improved.
While Intel does acknowledge this, it is not reasonable to expect their marketing
engine to give it quite as much attention.

These two effects will be demonstrated later in this paper. All the results shown
in this paper are taken from tests performed on a server from Dell. The system
includes a dual 2.4Ghz Xeon processor with Hyper-Threading. The system BIOS
includes the ability to enable or disable the Hyper-Threading, as is shown in
figure # . All tests were performed with original release of Windows Server 2003
(Enterprise Edition).

With Hyper-Threading enabled, the system appears to the operating system to
be a four-processor system. When disabled, the system looks like a dual-
processor system. In our testing, we were unable to detect that the operating
system performed any actions that took advantage of knowledge of which logical
processors were on the same physical processor. We should point out that this

Instruction Preparation
Logical Processor 1

Execution

Result Handling
Logical Processor 1

Instruction Preparation
Logical Processor 2

Result Handling
Logical Processor 2

testing was not designed to conclusively prove that this is the case - however we
suspect that it is so. We should note that Microsoft, in [Ref 4] , hints to possible
unspecified performance optimizations in what is now Server 2003, even though
we failed to find any optimizations in our testing.

The results in this paper are exclusively related to Windows Server 2003. We are
currently running the tests used in the
development of this paper under Server
2000. We can verify reports of
performance and stability problems
with Hyper-Threading on Windows
2000 Server, and at this time
recommend customers disable Hyper-
Threading under 2000. We are
working on a solution that would
enable HT under 2000, and expect to
publish a White Paper with those
results at some future date.

The results in this paper are
exclusively related to Windows
Server 2003 ... We can verify
reports of performance and
stability problems with Hyper-
Threading on Windows 2000
Server, and at this time
recommend customers disable
Hyper-Threading under 2000.

LI CENSI NG I SSUES

Because licensing issues can have the biggest impact on choosing whether to
enable Hyper-Threading, we should discuss this first.

While software may be licensed for use under an endless variety of ways, here
we are concerned with software that is licensed on a "per processor" basis. I f
you have a single physical processor with two logical processors enabled - does
that count as one processor or two? Fortunately Microsoft took an early lead in
declaring that the correct answer should be that it counts as one processor.

Unfortunately, the Microsoft Operating Systems prior to Windows XP and Server
2003 counted the logical processors from the Advanced Configuration and Power
Interface (APCI) table [Ref 3] . Thus some versions of the OS that should run on a
given configuration would fail due to licensing reasons. Microsoft fixed this issue
for the OS in Server 2003.

While it is up to each application vendor to define how their products are
licensed, we expect almost all vendors that license on the bases of number of
processors to apply that against the count of physical processors, not logical
processors as well.

Typically, when an application licensed on a per-processor basis starts, the
application calls an API (Application Programming Interface) to the OS to
determine the number of processors. Under older and newer Microsoft OS’s, the
response is the number of logical processors from APCI. To obtain the number
of physical processors, applications would need to add code. The new code
would either query the chip directly [Ref 5] , or (with the release of the Feb 2003
Software Developers Kit from Microsoft), call a new API to determine the number
of physical processors [Ref 6] .

Unfortunately, applications designed without this knowledge continue to count
logical processors against the license count. In some cases, the vendor may
have released a patch that may be downloaded, in others, they may grant the
user additional licenses until a newer version is available. We recommend to our
customers that they contact application vendors to determine their policy. I t is
unfortunate that there will be cases of vendors requiring the customer to update
to the latest shipping version (at cost) for a solution.

Customers considering Hyper-Threaded processors should work with their
application vendors to resolve licensing issues early on. Upgrades to mission-
critical applications are time-consuming, however, eventually they must be dealt
with. Taking the time to correct, and test, newer versions in the test lab before
rushing into a major upgrade project continues to be the best policy.

EXAMPLE OF PERFORMANCE I NCREASE AND DECREASE I N CPU
I NTENSI VE THREADS DUE TO HYPER-THREADI NG ON "LI GHTLY
LOADED" SYSTEM

To demonstrate actual results in increased and decreased performance we
devised some situations that might occur on a machine from time to time that
would exasperate the best and worst of a Hyper-Threaded processor.

In our first example (see Figure 3), we run tests on the upper end of a "lightly
loaded" system. To demonstrate this, we use one "CPU intensive" thread per
physical processor on our dual physical processor system. The "CPU Intensive"
task is a number crunching task that operates in tight loops. I ts design results in
few cache misses once it starts up. The task measures wall clock time for
processing a fixed number of calculations. Measurements from the first and last
third of the test are excluded from the results to avoid startup and end condition
cache miss issues. Two of these tasks on a dual processor system without
Hyper-Threading represents a 100% load.

We further use processor affinity (the ability to assign a process thread to a
specific processor) to cause the two tasks to be assigned to either the same
physical processor or different ones. We also let the operating system choose
processors "randomly".

Time to Complete Task Under Normal Loading
2 "CPU Intensive" tasks on a dual processor system

0

50

100

150

200

250

HyperThreaded on different physical processors
HyperThreaded on random physical processors
HyperThreaded on same physical processor

SingleThreaded on different physical processors
SingleThreaded on random physical processors
SingleThreaded on same physical processor

Figure 3 - Hyper-Thread effect on "CPU Intensive" Threads Under Light Load

As can be seen in the graph, when we assign the two threads to different
physical processors (green bars), it does not matter much whether Hyper-

Thus when the OS
randomly selects
threads to processors
this is a case of 33-50%
better performance with
Hyper-Threading
disabled.

Threading is enabled (measurements were well within measurable tolerance).
We have scaled the results to indicate 100 shorter of the two values.

Alternatively, the red bars show the results when we force assignment to the
same physical processor (In the Hyper-Threading case, this means assigning to
different logical processors on the same physical processor). As is expected,
without Hyper-Threading (labeled Single-Threaded), assigning to the same
physical processor results in slightly more than twice the time (the time above
200% should be attributed to context switching)
over the case of Single-Threaded and assigned to
different processors. However, comparing with
Hyper-Threading enabled, this same situation
demonstrated a 17.5% improvement over the
Single-Threaded result. This is in line with Intel’s
claim of 15 to 20% improvement.

The results when we left it to the operating system select which processor to use
demonstrates that flip side of Hyper-Threading. Because the OS acts unaware of
the relationship between logical and physical processors, it has a chance of
assigning the second thread to the same physical processor. When the second
thread is assigned, it has a "one in (number of logical processors minus one)"
chance of being assigned to the same physical processor. In the Figure 4 below,
we show that when presented with a one task per physical processor, the odds
of any thread sharing a physical processor increases towards 50% as the number
of processors increase.

Physical
Processors

Single Dual Quad 8-way 16-way

Odds 0% 33% 43% 47% 48%
Figure 4 - Odds of OS Selecting Same Physical Processor

With Hyper-Threading enabled, this means that 1/3 of the time the second
thread was placed in the same physical processor
(while the other physical processor had two idle
threads), and indeed the results in the blue bar
(Figure 3) reflect this. With Hyper-Threading
disabled, the OS has no choice but to properly
assign the second thread to the second processor.
Thus when the OS randomly selects threads to
processors this is a case of better performance
with Hyper-Threading disabled. (But please
remember that this is a closed and contrived test to demonstrate a point, not
necessarily a live running system!!!).

With Hyper-Threading
enabled, this same
situation demonstrated
a 17.5% improvement
over the Single-
Threaded result.

In the heavily loaded
system, we see the same
17.5% performance gain
with the use of Hyper-
Threading, in spite of the
OS.

EXAMPLE OF PERFORMANCE I NCREASE AND DECREASE I N CPU
I NTENSI VE THREADS DUE TO HYPER-THREADI NG ON "HEAVI LY
LOADED" SYSTEM

We also demonstrate results on a "Heavily Loaded" System. The graph in Figure
5 represents results of a four "CPU Intensive" tasks on our dual physical
processor system.

Time to Complete Task Under Heavy Loading
4 "CPU Intensive" tasks on a dual processor system

0

50

100

150

200

250

HyperThreaded on random physical processors

SingleThreaded on random physical processors

Figure 5 - Hyper-Thread effect on "CPU Intensive" Threads Under Heavy Load

Because there was at least one active task for the OS to assign per processor, it
was not necessary to use processor affinity.
The time shown is calibrated to the numbers in
the previous chart. In the heavily loaded
system, we see the same 17.5% performance
gain with the use of Hyper-Threading, in spite
of the OS. This is in line with the results that
Intel advertises for the chip.

EXAMPLE OF PERFORMANCE I NCREASE AND DECREASE I N TYPI CAL
USER REQUEST DUE TO HYPER-THREADI NG ON VARYI NG LOADED
SYSTEM

As we deal with servers used for multiple simultaneous users, especially systems
configured for Terminal Services (and often Citrix Metaframe), we wanted to
measure performance more typical of users.

The following test uses a script that repetitively launches a GUI application. The
application displays a dialog box, sleeps, and exits. The script measures the
amount of time to complete the loop. Again, we use only the middle third of the
results. While not representing a heavy use of CPU cycles, this test
demonstrates the serialized effect of many small CPU delays among multiple
dependent threads each time the thread is in the processor. The script is run
under various loads.

In the graph shown in Figure 6, the horizontal access indicates the number of a
second type of competing CPU intensive threads (this CPU intensive thread also
performs considerable math, however in a less predictable method from a cache
miss perspective) also present in the system. The OS was allowed to assign
processes as needed, without coercion of affinity.

Time Required to Complete "User Tasks"
With and Without HyperThreading

0

50

100

150

200

250

300

1 2 3 4 5

CPU Intensive Tasks

Ti
m

e
as

 P
ct

 o
f B

es
t p

os
si

bl
e

Average CPU Intensive Task SingleThreaded Average CPU Intensive Task HyperThreaded

Figure 6 - Hyper-Thread effect on "User" Threads Under Various Loads

The results at the extremes are as one would expect. With only one CPU
intensive task present on the dual processor system, in the Single-Threaded case

I t is in that in between range of
system loading… that turning on
Hyper-Threading reduced response
time of a "typical user request" by
20 to 50%.

is running at about 50% and Hyper-Threading provides little benefit. With five
CPU intensive tasks running, the system is overly saturated and again Hyper-
Threading shows only marginally differing results. I t is in that in between range
of system loading - from one CPU intensive per physical processor to one per
logical processor- that turning on
Hyper-Threading reduced response
time of a "typical user request" by 20
to 50%. The test obviously
accentuates the gains to be had by
reducing the effect of cache misses.

In Figure 7, we present the average calibrated results of the newer CPU intensive
tasks performing in the scenario presented above.

Time Required to Complete CPU Intensive Tasks
With and Without HyperThreading

0

50

100

150

200

250

1 2 3 4 5

CPU Intensive Tasks

Ti
m

e
as

 P
ct

 o
f B

es
t p

os
si

bl
e

Average CPU Intensive Task SingleThreaded Average CPU Intensive Task HyperThreaded

Figure 7 - Hyper-Thread effect on "CPU Intensive" Threads Under Various Loads

Consistent with our earlier results, under a lightly loaded system (one CPU
intensive task per physical processor) we can achieve better results with Hyper-
Threading turned off. While under increasing loading the Hyper-Threading
improves performance of these tasks.

We do not believe that the lightly loaded results above present cause for
enterprises to disable Hyper-Threading on their Terminal Servers. Our works on
the operating system prioritizations in the past have shown that the real gauge

Thus we would recommend
to customers that they
enable Hyper-Threading on
their servers, assuming
licensing and upgrade issues
do not exist .

of system performance is how many users can comfortably use the server
simultaneously. With that as a benchmark, the scalability of the system is most
affected by the serialized delays in
performing routine "user tasks", not
heavy-duty CPU intensive number
crunching activities.

In these two previous graphs, we present a balanced look at the gains and pains
of enabling Hyper-Threading in a multi-processor, multi-user server, such as is
typical of a Terminal Server. We must however, remember that these cases are
derived to illustrate the effect of Hyper-Threading under certain conditions.

In a production server - such as a Terminal Server, there are many more than
one "User Task" competing with "CPU Intensive" number crunching tasks. On an
8-way system, there may be thousands of typical "User Tasks" running to only a
handful of the "CPU Intensive" applications. I t is in this real-world environment
that leads us to weigh more heavily the results the results of "User Task" testing
than that of the "CPU Intensive" applications. Thus we would recommend to
customers that they enable Hyper-Threading on their servers, assuming licensing
and upgrade issues do not exist. On
average, we expect customers to
experience an average of 15% (ranging at
times from equal performance to 30%)
improved performance in real-world
situations when Hyper-Threading is
enabled on their processors.

While we have not shown testing related to the maximum number of
simultaneous users sustainable with and without Hyper-Threading, we would
expect an average of about 10% increase when Hyper-Threading is turned on.
In a paper done by Citrix Systems, [Ref 8] , we can see results in this range for a
dual processor system. Although the results in that paper for a quad-processor
system in that paper showed a negligible improvement with Hyper-Threading,
we feel that this may be due to the limitations of the hardware used. Although
we have not verified this, we would expect to see measurable Hyper-Thread
benefit in a quad processor system of more recent vintage. Of course, we
should mention that application mix in play would affect your results.

We do not believe that the
lightly loaded results above
present cause for enterprises to
disable Hyper-Threading on
their Terminal Servers.

EFFECTS OF PRI OTI ZATI ON VERSUS HYPER-THREADI NG

As mentioned earlier, we do work in the space of improving operating system
performance by modifying the multi-tasking selection algorithms of the OS. As
the result of this work can be similar - to improve typical user task
responsiveness - we wanted to compare results.

We re-ran the prior tests in the presence of TMuLimit, a software service that
improves the scalability of Terminal Servers by monitoring and altering task
prioritizations. This software reduces the serialized delays that occur to well
behaved software applications that need only occasional small CPU slices, by
assigning task priorities based upon CPU usage. For these tests we disabled all
but the prioritization features of the service.

The chart in Figure 8 shows a combination of the prior results for both "User
Task" and "CPU Intensive Task" with Hyper-Threading disabled under varying
loads. To this we have added the results of the identical tests when TMuLimit is
used to augment the operating system scheduling algorithms.

Time Required to Complete Tasks
Without HyperThreading

With and Without TMuLimit

0
50

100
150
200
250
300

1 2 3 4 5

#CPU INTENSIVE TASKS

Ti
m

e
as

 P
ct

 o
f B

es
t p

os
si

bl
e

User Task w/o TMuLimit User Task with TMuLimit

CPU Intensive Task w/o TMuLimit CPU Intensive Task with TMuLimit

Figure 8 - Effects of Task Prioritization without Hyper-Threading

As can be seen in the chart, responsiveness of typical "User Tasks" are improved.
This occurs because the priority given threads that are consuming too much CPU
is reduced. In this instance, Terminal Server users would not even notice the
presence of the additional system load presented by the "CPU Intensive" tasks.
While we know that the time to complete the CPU intensive tasks should

Customers considering system
upgrades, or operating system
upgrades, to obtain the benefits of
Hyper-Threading should consider
the benefits of TMuLimit to improve
system performance.

increase with TMuLimit when there is heavy load on the system, however the
differences in this scenario fall within our measurement thresholds. This
provides a dramatic example of the effect of serialized delays has on typical user
tasks.

But how would TMuLimit operate under Hyper-Threading? In Figure 9 we
present the results the same tests run with the Logical Processors enabled.

Time Required to Complete Tasks
With HyperThreading

With and Without TMuLimit

0
50

100
150
200
250
300

1 2 3 4 5

#CPU INTENSIVE TASKS

Ti
m

e
as

 P
ct

 o
f B

es
t p

os
si

bl
e

User Task w/o TMuLimit User Task with TMuLimit

CPU Intensive Task w/o TMuLimit CPU Intensive Task with TMuLimit

Figure 9 - Effects of Task Prioritization with Hyper-Threading

Again, User Task responsiveness is greatly improved under load with the
presence of TMuLimit, with only minor differences in the time to complete the
CPU intensive tasks. Together, these two technologies provide the best of both
worlds -- improved responsiveness to typical user tasks, plus improved CPU
throughput for CPU intensive calculations.

Customers considering system upgrades, or operating system upgrades, to
obtain the benefits of Hyper-Threading should consider the benefits of TMuLimit
to improve system performance.
Using TMuLimit could be a low-risk
solution to improve performance for
the short run. This could delay costly
purchases for a period of time, and
provide an opportunity to fully
resolve licensing and technical issues

associated with a major upgrade prior to deployment. Those ready to deploy
Hyper-Threading can still benefit greatly from TMuLimit.

SUMMARY

1) An Intel processor with Hyper-Threading can usually be configured via BIOS
to be either enabled or disabled.

2) Licensing continues to be an issue with this technology. The issue is that
older software will detect twice the number of physical processors present when
Hyper-Threading is enabled. Although, with recent releases by Microsoft,
licensing of the operating system is no longer an issue, other applications may be
affected. Applications must be tested for license issues, and typically the vendor
contacted for a resolution. While we believe most all vendors will be
cooperative, in a few cases, it may still be better to disable Hyper-Threading
rather than resort to a time and money consuming upgrade process for the
application.

3) Under controlled circumstances, Hyper-Threading can reduce performance;
under other circumstances it raises performance. We find that in a multi-
processor system that is heavily loaded, Hyper-Threading vastly improves the
performance. In lightly loaded systems, while the improvement is less, we none-
the-less find beneficial increases. In the absence of license issues, we
recommend enabling Hyper-Threading in Multiprocessor systems with the 2003
Operating System.

4) The main causes of the performance degradation under Hyper-Threading
occurs because the operating system treats all logical processors the same, and
the chip treats the priority of the two threads running in the logical processors at
the same priority. Here we show how supplementing the operating system
multi-tasking selection algorithms can further improve system performance, with
or without Hyper-Threading.

5) TMuLimit can be used to delay costly upgrades necessitated by over-worked
servers, or to further improve performance on even the newest of servers.

References

[Ref 1] http:/ / www.intel.com Intel provides a variety of information on topics that have been
helpful in the development of this paper. While some specifics are mentioned in the references that
follow, a general reference to the site is in order.

[Ref 2]Hyper-Threading Technology Architecture and Microarchitecture. D. Marr et al,
I ntel Technology Journal, Volume 6, I ssue 1, February 14, 2002.

[Ref 3]Hyper-Threading Technology on the I ntel Xeon Processor Family for Servers.
I ntel. 2002. http:/ / www.intel.com/ eBusiness/ pdf/ prod/ server/ xeon/ wp020901.pdf

[Ref 4] Microsoft Windows-Based Servers and I ntel Hyper-Threading Technology. J.
Borozan, Microsoft Corporation.
http:/ / www.microsoft.com/ windows2000/ server/ evaluation/ performance/ reports/
hyperthread.asp

[Ref 5] A Solution for Counting Physical and Logical Processors in a 32-bit system. K.
Nguyen, I ntel. http:/ / cedar.intel.com/ cgi-
bin/ ids.dll/ content/ content.jsp?cntKey= Generic+ Editorial% 3a% 3axeon_cpu_count
er&cntType= I DS_EDI TORI AL&catCode= DDZ

[Ref 6] Microsoft Platform Software Development Kit, February 2003. Microsoft
Corporation. http:/ / www.microsoft.com/ msdownload/ platformsdk/ sdkupdate/

[Ref 7] Cramming more components onto integrated circuits. Gordon E. Moore.
Electronics, Volume 38, Number 8, April 19, 1965.

[Ref 8] How Hyper-Threading Affects User Capacity of Metaframe XP Servers. Citrix
Systems, March 2003.
http:/ / support.citrix.com/ kb/ entry!default.jspa?categoryI D= 118&entryI D= 2468&

