
 April, 2006

Porting C++ to x64 1 Copyright 2006 TMurgent Technologies

TMurgent Technologies

Porting C++ Applications to x64
TMurgent Developer Series

White Paper by Tim Mangan

Founder, TMurgent Technologies
April, 2006

 April, 2006

Porting C++ to x64 2 Copyright 2006 TMurgent Technologies

Introduction

This White Paper provides a quick primer on what a developer needs
to know when faced with the task of porting a 32-bit program to run in

64-bit mode on an “x64” processor. The information in this paper is
based on experience in porting both GUI based applications, as well as

Windows based Services.

The “x64” platform includes both AMD and Intel chipsets. AMD
introduced the x64 technology in their Opteron line and Intel offers it

in some of their Xeon lines. These CPUs can run 64 or 32 bit
Operating Systems.

Intel also has an older 64-bit CPU called Itanium that only runs in 64-
bit mode. This paper does not cover Itanium, although many of the

points in this paper will also be relevant in porting to Itanium. Intel
has signaled that Itanium will continue to be supported, although

market adoption has been quite limited.

Reasons for Porting

To start with, you might not need to port. Many companies have been
purchasing x64 CPUs but running with the 32-bit version of the

Microsoft Operating System. Microsoft released an x64 version of their

operating systems in 2005 after a long beta cycle. However, due to a
lack of device drivers many companies could not run x64 version, and

continue to use the 32-bit OS1. To those customers an x64-bit port
would be useless.

However, x64 drivers and Anti-virus products are now appearing in the

market and selecting the x64 OS is becoming more reasonable. The
primary drivers for shifting to x64 OS are very large programs (such

as databases) and Terminal Servers. The companion White Paper,
“x64 Servers: Do you want 64 or 32 bit apps with that server”2

addresses why an enterprise might choose to install 32-bit applications
over x64 applications on their x64 Terminal Server, even if x64 is

available.

1 32-bit mode is also referred to as “x86”, which refers to the generic version of
Intel’s PC CPU architectures starting with the 8086 all the way through the current
32-bit lines. In reality, many references to x86 mean a subset of those CPUs
starting with the Pentium.
2 Available on-line at http://www.tmurgent.com/WhitePapers/WP_x64ShouldYou.pdf.

 April, 2006

Porting C++ to x64 3 Copyright 2006 TMurgent Technologies

A port to x64 is necessary in the following cases:

• The software contains a kernel mode driver. All kernel
components running in the x64 OS must be 64-bit. No

exceptions, unless you can re-write the 32-bit driver as a User-
mode driver.

• The software uses some of the under-documented “Native API”
calls into the kernel that are not supported by 32-bit applications

in an x64 OS.
• The software needs access to more than 2GB or user mode

memory3.
• The software needs to access a component (dll or such) that

only exists as a x64 executable4.
• Somebody thought it was a good idea. The boss signs your

paycheck; the customer puts money into the company bank
account to cover the check.

A 32-bit program that gains no added functionality by being a 64-bit
program will be larger. There are some CPU efficiencies available if

you port. For example, although 32-bit instructions are executed as
efficiently via hardware (not software emulation), there are some API

overhead incurred when the operating system redirects activities such
as registry access. These are very small overheads and not typically a

reason to port. The added registers when running in 64-bit can make
CPU intensive applications more efficient also (discussed later in this

paper).

Also note that the x64 OS does not support 16-bit applications. So at
a minimum those need to be rewritten to 32 bit (not covered in this

paper). But don’t forget about the installers! Many companies
continue to use old installers that are 16-bit. These will not work

either and you need to update your installer.

Some Facts

In a 32-bit processor, unless you use PAE, you are limited to 4GB of
memory, which is 232. 264 would be 16 Exabytes, where an Exabyte is

a billion Gigabytes. However the current x64 CPUs run with only 40-
bits of the 64-bits for addressing used in a 64-bit container. 240 is 16

Terabytes, which should be enough memory to last us a while. It is
possible that future CPUs may increase the number of address bits,

but certainly not for quite a while. I have seen documentation that
claims the current architecture can extend to use 52 bits (providing a

3 Other solutions such as PAE might also solve this problem on a 32-bit OS.
4 We are unaware of any at this time, but you know it is inevitable.

 April, 2006

Porting C++ to x64 4 Copyright 2006 TMurgent Technologies

range of 4 Petabytes), implying (but not stating unequivocally) that

the OS is 52-bit ready if the CPUs show up. Your application code
need not (indeed should not) worry about the number of bits used in

memory addressing – just treat them as 64-bit quantities and
everything will be good. By the way, a page of memory in x64 is 4

Kilobytes, just as it was in 32-bit mode.

Unlike the shift from 16-bit to 32-bit, not everything doubles in size.
Obviously pointers, which were 32-bits are now 64-bit. Integers,

however, usually remain unchanged. We have had both 32 and 64 bit
integers available for some time. For most applications, 32-bits is still

big enough for whatever you are counting. Floating point numbers
also remain the same size. Handles (including HWNDS, IO and timer

handles) remain 32-bits as they are really implemented as indexes in
lookup tables that don’t need to grow. Size information normally

should double from 32 to 64 bits also, and as is discussed later in this

paper is probably the trickiest of the problems in porting.

The operating system provides some redirections for applications
running in 32-bit mode to ease your pain. This is called the WOW64

subsystem. There are many ways that these redirections appear, and
the methods used are inconsistent in naming convention which leads

to confusion.

For example, 32-bit programs need to load 32-bit dlls; 64-bit
programs need to load 64-bit dlls. This includes all those system dlls.

On an x64 OS, the system32 contains the x64 versions of these dlls.
Microsoft chose to not rename this folder to system64 due to

programs, but to redirect. So a 64-bit program requesting a system
dll will search the actual system32 folder and receive a 64-bit dll. A

32-bit program, however, will be redirected by the WOW64 subsystem

to a different folder called SysWow64 (as in C:\Windows\SysWow64).
This redirection takes place whether you call LoadLibrary or open a file

reference, including a hard-coded “C:\Windows\system32” (which you
shouldn’t do, but it manages to work. You should use environment

variables for things like the system root, windows root, system32,
program files, and user profile).

Similarly, a redirection occurs for the Program Files folder. 64-bit

programs go into the Program Files folder and 32-bit programs go into
Program Files (x86). Again, redirection is automatic. 32-bit

programs, both exes and runtime components with extensions such as
dll and ocx, use a file format called PE32. 64-bit programs use an

extension to this format called PE32+. The format is nearly identical

 April, 2006

Porting C++ to x64 5 Copyright 2006 TMurgent Technologies

except for header settings and a few places where pointers and offsets

are used.

WOW64 also does a redirection. HKLM/Software contains keys for use
by 64 bit applications. 32-bit applications get pointed to a sub-key

HKLM\Software\Wow6432Node. This includes entries for 32 bit
applications as well as the classes sub-key which is used by COM

based applications and ensures that 32-bit programs get the right COM
object. Note that HKCU does not have a redirected sub-key for

WOW64, nor (to my knowledge) does HKLM/SYSTEM.

Another confusing aspect about all this redirection is that you need to
be careful about how you look for files as a developer. For example,

there is both a 64 and 32 bit command shell (cmd.exe) available.
Normally you use the 64-bit version that will show you files in their

normal places (system32 contains 64 bit dlls and SysWow64 contains

the 32 bit ones), but if you run the 32-bit shell the redirection occurs.
Similarly there is both a 32 and 64 bit version of the Internet Explorer.

When using 3rd party tools this may lead to confusion if you don’t pay
attention.

Microsoft does offer some escape clauses to all this redirection as well.

IsWow64Process is a new runtime library function that will tell your
program if it is 32/64 bits. Other methods can “work around” the

WOW64 when needed as well. Rather than get bogged down in that
detail, look into the MSDN documentation if you really need to cross

access.

What It Takes

First of all, you don’t really need an x64 system to build 64 bit code.

Sure, you need one for testing, but it doesn’t need to be your
development machine. While this has nothing to do with x64, we use

Virtual Machines for all our development projects these days.
If you haven’t invested in VMs you should consider it. It makes a very

nice, portable, and reproducible environment for building software.
But I digress. By the way, you can also debug 64 bit code from a 32-

bit machine if you use remote debugging. You need to run the
RdbgSetup from your VS2005 disk on the target x64 machine, then

you can use the VS2005 IDE to connect up (be sure to select the x64
platform in the IDE).

While it is possible to build x64-bit applications using other tools,

moving to Visual Studio 2005 is well advised. Intel also makes nice

 April, 2006

Porting C++ to x64 6 Copyright 2006 TMurgent Technologies

compilers and if you are not doing Win32 GUI based apps (the API is

still called Win32 even if you are writing a 64-bit program) that might
be an option. The remainder of this white paper assumes that you are

using VS2005.

The first step is to port the application to VS2005 and get the
application compiling, linking, and running with that tool set in 32-bit

mode. Another white paper in the TMurgent Developer Series,
“Moving to Visual Studio 2005”5, covers porting applications from

Visual Studio 2003 to 2005.

Once you have the 32-bit building and running, it is time to take on a
64-bit build. You probably already have two build configuration

options for your applications – namely Debug and Release. When you
look at your project properties you will see the familiar Build selection,

plus a new selection called “Platform”. Your converted project will

already have one defined platform called “Win32”, and should look
similar to Figure 1.

Figure 1 - Project Property Page

5 Available online at http://ww.tmurgent.com/WhitePapers/WP_VS2005.pdf.

 April, 2006

Porting C++ to x64 7 Copyright 2006 TMurgent Technologies

Next you will create a new platform for Win64. You first create the

platform for the solution, and then for (each) project. Click on the
“Configuration Manager…” button. You will see a new dialog box like

Figure 2.

Figure 2 - Configuration Manager

Use the pull-down menu under “Active Solution Platform” and select

”New”. A third pop-up dialog appears similar to Figure 3.

Figure 3 - New Solution Platform

You will want to select a Win64 platform (don’t ask me why the ARM
Pocket PC is the default here!), created as a copy of the Win32

platform with the checkbox selected to create the project platforms for

 April, 2006

Porting C++ to x64 8 Copyright 2006 TMurgent Technologies

you. After you click OK you can close the Configuration Manager

window also.

I typically change the general output directory for all configurations
and all platforms to “..\$(Platform)\$(Configuration)”. At first, I was

adding 32 or x64 to the name of output executables to help me keep
them straight when they get copied around; however with experience I

discarded that practice.

Most of your code will probably be OK under x64 bit, especially if you
followed reasonable coding standards. The biggest problem I find is

the incorrect use of placing size information into a DWORD and
passing that as a parameter. Since size_t grows from 32 to 64 bits, if

your code uses a DWORD you may need to make adjustments.

The next most frequent problem is structure alignment issues.

Programs that communicate with other programs via a socket or
binary file may need to consider the case of dealing with a counterpart

that is either 32 or 64 bit.

It is very rare that I need code that is specific to a platform.
Sometimes the new IsWow64Process () runtime method will do the

trick, but sometimes you need to #ifdef.

One example is in dealing with XML parsing. If you do XML parsing on
x64 you really want to use the msxml6 libraries. As of this writing,

there is no SDK for that version so you need to directly reference the
appropriate dll file for the build to get the COM interfaces that you

need.

If you find yourself in

Figure 4 - Example of platform ifdef

I should mention that for those particular lines to work you need both

the 32 and 64 bit versions of the dll files on you system. That means
you must install MSXML6 on both a 32-bit and 64-bit OS and copy

them to your development system.

#ifdef _WIN64

 #import “..\..\msxml\msxml6_x64\msxml6.dll” raw_interfaces_only

#else

 #import “..\..\msxml\msxml6_32\msxml6.dll” raw_interfaces_only

#endif

 April, 2006

Porting C++ to x64 9 Copyright 2006 TMurgent Technologies

Finally, once everything is up-and-running you can consider the

performance aspects of x64. I ran several builds of a small test
program on an x64 server to show the differences in memory size and

handle usage:

Figure 5 - Size and Handles of different builds

X64 programs are larger. Some of this is the increased pointer sizes,

some would be larger instructions. While an x64 server allows you to
install and use more memory, you still have to buy that memory.

Notice the difference in handles. Part of the Wow64 overhead is the
use of those handles. Handles are not normally a performance issue,

but it is interesting to notice.

On the flip side of the performance equation, having many more

registers to deal with, x64 programs can behave with greater
efficiency. In particular you may want to look at function call

parameters, as up to 4 64-bit integers or addresses may now be
passed in registers rather than the stack6. Additional integer

parameters must be placed on the stack. This saves the additional
CPU instructions to push and pop values onto the stack (although

stack space is allocated for the parameters in case the called function
needs the register). For frequently called functions in CPU intensive

applications this may lead to performance optimizations by modifying
calling parameters.

Summary

This paper provides a quick introduction to porting C++ programs to
the x64 platform. As a rule of thumb, I find that porting from VS2003

to VS2005 is more work than porting to x64 for most software
applications.

For detailed information on points covered (and not covered) in this

paper I suggest that you consult MSDN-online documentation.

6 If there is a hidden “this” parameter this is placed in the RCX register leaving three

registers for integer parameters.

Example Exe Size Working Set Page Handles

VS2003 built 32-bit 264KB 3660KB 1244KB 27
VS2005 built 32-bit 320KB 3612KB 1228KB 27

VS2005 built 64-bit 478KB 4976KB 2628KB 20

 April, 2006

Porting C++ to x64 10 Copyright 2006 TMurgent Technologies

About TMurgent Developer Series White Papers

At TMurgent, we help Software vendors with development issues,

especially when it comes to system performance, management, and
working with Terminal Services. Recent projects include helping

companies make their products more Terminal Services aware, kernel
interfacing, and porting to VS2005 and x64 platforms. We provide

education to the developer community via the “TMurgent Developer
Series” white papers to advertise our services. Please visit our website

at www.tmurgent.com for more information.

