
Folders, Files, and Deployment Performance

Effects of “Files” and “Folders” in App-V 5

SP2 Deployment Performance

TMurgent Performance Research Series

June, 2014

Folders, Files, and Deployment Performance

ContentsContentsContentsContents

1 Introduction .. 4

2 Background on the App-V File System ... 5

2.1 App-V Cache skeletal framework .. 5

2.2 The Reparse Point .. 6

2.3 The new “Sparse File” .. 6

2.4 Detecting Reparse Points and Sparse Blocks and how much is cached. 7

2.5 Anatomy of the compressed .AppV file. ... 8

2.5.1 Central Directory Map .. 9

2.5.2 Use of Entries in the Zip based format .. 10

2.5.3 FilesystemMetadata.xml and the Special Effect of Empty Folders in App-V 11

2.5.4 AppXBlockMap and Performance .. 13

3 Summary of Where Impacts of Folders and Files Are Felt .. 14

4 Testing Strategy Used ... 15

4.1 About the Testing Platform .. 15

4.2 About Test Packages and “Streaming Configuration” ... 15

4.3 About the Testing Methods ... 15

4.3.1 Test Package .. 16

4.3.2 Test Pass .. 16

4.3.3 Test Cycle .. 17

4.4 About the Test Results Accuracy .. 17

5 Test Packages Utilized ... 18

5.1 Warm-up Package .. 18

5.2 LotsOfNothing (Baseline) ... 18

5.3 LotsOfFiles_PVAD ... 19

5.4 LotsOfFolders_PVAD_Empty .. 19

5.5 LotsOfFolders_VFS_Empty ... 19

5.6 LotsOfFolders_PVAD_WithOneFile ... 19

5.7 LotsOfFolders_VFS_WithOneFile... 19

Folders, Files, and Deployment Performance

5.8 LotsOfFiles_D50_F1000 ... 19

6 Detail Test Results ... 20

6.1 SCS Mode Testing without Mounting .. 22

6.2 SCS Mode Testing with Mounting ... 23

6.3 Cached Mode without Mounting .. 24

6.4 Cached Mode with Mounting .. 25

6.5 Impact Analysis .. 26

6.5.1 Impact of unnecessary files ... 26

6.5.2 Impact of Unnecessary Folders .. 27

6.5.3 The Effect of VFS ... 28

7 About This Research Paper Series .. 30

Folders, Files, and Deployment Performance

Copyright © 2014 TMurgent Technologies, LLP

pg. 4

1111 IntroductionIntroductionIntroductionIntroduction

The purpose of this research paper is to document the effects that unused files and folders have

in Microsoft App-V Virtual Application Packages. In this paper, the impact of a large number of

folders and/or small files is examined. A separate paper will examine the impact of a large file.

The effort is squarely aimed at answering questions on how the deployment of packages with a

large number of files affect performance.

This work is part of a series of efforts to characterize the impact that different application

elements have on the performance of virtual applications.

Most readers of this research will find themselves satisfied with reading the second and third

section of this paper. The remaining sections detail the testing process, packages used, and

provide further test details and additional findings.

Folders, Files, and Deployment Performance

Copyright © 2014 TMurgent Technologies, LLP

pg. 5

2222 Background on Background on Background on Background on the Athe Athe Athe Apppppppp----V File SystemV File SystemV File SystemV File System

The App-V file system has two major parts that receive different treatment, those items that were

captured on the sequencer under the designated Primary Virtual Application Directory (PVAD),

and those that were captured elsewhere on the partition holding the Windows folder. The latter

are referred to as VFSd files (for Virtual File System) as they are placed inside the App-V file under

a folder called VFS. The primary difference in treatment of these two areas is that the client can

assume complete isolation for PVAD files and folders, but must virtually integrate VFS files and

folders with the regular client operating system’s file system.

Items in the PVAD area are generally accessed by the client/application using simple redirection –

the PVAD folder is treated as a unique location on the client that does not need to overlay on top

of existing folders and files. Meanwhile items in the VFS must be overlaid by one of the App-V

drivers (based on pellucidity settings) on top of existing, not-virtualized, folders and files.

But PVAD versus VFS is not the only difference to consider. There are also differences in treatment

by the App-V client depending if the object is a file or a folder, and whether the folder is empty or

not.

From a performance perspective, user changes to files also play a big part. Ultimately, when an

application tries to locate a file not under the PVAD, the App-V client potentially has to look in up

to three different places for the file; the user Copy-On-Write cache, the package VFS area, and the

native file system. Additionally, the package content may be in memory, on the local file system

cache, or currently residing in compressed form on a remote share. Placed in this light, it is

amazing that we can get reasonable performance out of the system!

A particular product feature to consider, when discussing performance of the App-V File System is

how the items are cached on the local system. A major feature of the client cache is called Shared

Content Store (SCS) Mode, where only placeholders for the folders and files exist in the local

cache and actual file content is streamed into memory from the package source on demand.

2.12.12.12.1 AppAppAppApp----V Cache skeletal frameworkV Cache skeletal frameworkV Cache skeletal frameworkV Cache skeletal framework

Whether or not SCS mode is in use, the client must create placeholders on the NFTS partition that

forms the App-V file cache for the package. These can be seen under the C:\ProgramData\App-V

folder, by default. Here, you will find folders for each package, using the name of the PackageID

GUID. Under that is a folder for the PackageVersion GUID, and under that is where the internals

of the App-V file are exposed, through these placeholders.

Folders, Files, and Deployment Performance

Copyright © 2014 TMurgent Technologies, LLP

pg. 6

The placeholders for each file and folder are real file system objects, but with some exotic

properties added to them. The special properties used in particular by App-V are called reparse

points and sparse blocks.

2.22.22.22.2 The Reparse PointThe Reparse PointThe Reparse PointThe Reparse Point

A Reparse Point is a file system property that acts as a signal to a file system filter driver. When

the reparse point is set, a filter driver can query the file object to see if it is an object that is has to

handle in a special way. All of the App-V package cache folders and files are marked with a reparse

point by the App-V Client on creation to signal the App-V filter drivers, specifically the AppVStrm

driver, to handle access to them specially.

2.32.32.32.3 The new The new The new The new ““““Sparse FileSparse FileSparse FileSparse File””””

Folders do not use the Sparse attributes in App-V. The folder definition, including child members

fully exist in the on-disk image locally. Sparse, however, is used for files in both the PVAD and VFS.

Sparse Files were originally created as a general solution for saving space on a file system, but in

particular was created for use by databases. Typically, the database wants to treat the database

storage a large contiguous space, parts of which are paged in and out of memory. As things

change in the database, it doesn’t want to deal with the managing the file growing and shrinking

operations, so it creates a fixed size file and then zeroes out portions not in use. To save on

storage, designers created the idea of a sparse block, where zeroed out portions could detected

and removed, with markers placed at the file system level to indicate what parts of the file were

actually present on disk.

A Sparse File on disk consists of a set of sparse blocks and an overall length. Each sparse block has

a starting offset and length. For a traditional Sparse File, any file part not contained in a defined

sparse block is considered to be all zeroes. If you look at the properties of a sparse file, you can

typically see that the two fields “file length” (overall length of the file) and “file space on disk”

(size of the actual sparse blocks) are different.

App-V (SoftGrid originally) extended the concept of Sparse Block for streaming purposes. Instead

of assuming that non-present sparse blocks are all zeroes, App-V uses this to indicate that those

portions of the file need to be streamed. When a process tries to open and read one of these files,

the AppVStrm driver first detects the reparse point, indicating that the file I/O operation is one

that it should take action on. Once detected, the driver checks the list of sparse blocks currently

present. When the read request is for a portion not currently cached on disk (or already in

memory), it puts the read request on hold while it attempts to stream that portion of the App-V

package from the source.

Folders, Files, and Deployment Performance

Copyright © 2014 TMurgent Technologies, LLP

pg. 7

Assuming that the “local disk” is actually a virtualized disk file on a remote system, and that the

streaming source has similar latency, then the amount of time to satisfy the request should be

similar whether it is present in the “local” cache.

2.42.42.42.4 Detecting Reparse Points and Sparse BlocksDetecting Reparse Points and Sparse BlocksDetecting Reparse Points and Sparse BlocksDetecting Reparse Points and Sparse Blocks and how much is cached.and how much is cached.and how much is cached.and how much is cached.

To determine if a package file is actually cached at the client, windows explorer provides a visual

hint.

In this image above, files with the grey “X” on them are not fully cached. You can also right-click

one of the files and request the Properties dialog (as shown on the cover of this document).

Comparing the size (which represents the logical size of the file) and size on-disk fields

approximates the completeness of the caching of the file.

If you are curious about completeness, you should view the sparse blocks directly. You can

download a free tool from the TMurgent website called “Test_Directory” for this purpose. Point

this tool at the App-V cache and it will show you the detail of what sparse blocks are present on

the files and what parts of the file they represent.

Adding the reparse point and sparse information to the file increases the on-disk size of the file

slightly. But when portions of the file, such as the case in the image above, are not yet streamed

into the local App-V cache the on-disk size can be small.

As can be seen in the illustration above, and the other on the cover of this document, this all

means that the amount of space actually taken up on disk for a given file might be either less, or

more, than the actual file.

Folders, Files, and Deployment Performance

Copyright © 2014 TMurgent Technologies, LLP

pg. 8

2.52.52.52.5 Anatomy of the compressed .AppV file.Anatomy of the compressed .AppV file.Anatomy of the compressed .AppV file.Anatomy of the compressed .AppV file.

For the client to deploy an AppV file, even with SCS Mode enabled, it has to read in some

significant portions of it. Understanding the format can be helpful in understanding the

performance impact of certain packages. Microsoft App-V 5 packages are stored in a format that

is based off the traditional “zip” compression file formats1.

At a high level, the format consists of a number of entries, some optional headers, and a “Central

Directory”, which is oddly placed at the end of the file. This is

shown in the image on the right.

Microsoft App-V 5 stores the package contents in a zip

compression based format that is specially controlled to make

the complete package definition through the inclusion of

additional information.

Compression files in general are constructed starting with a series of entry records representing a

folder or file object (consisting of a local file header, encryption header, file data, and a data

descriptor), some optional headers, and the Central Directory at the end of the file.

This format makes it easy to add a file by overwriting the end of records marker and directory

map with the new file record, then rewriting the archive headers and updated directory (the

remainder of the file need not be touched). Not that App-V works with the file this way, but that

seemed to be the intent of the original zip format designers. It makes parsing the file unusual, as

typically headers with locators are placed at the front of the file.

The App-V usage utilizes the relatively common “decode” compression algorithm which is

supported directly by kernel interfaces. It also uses the Zip64 extensions, which has nothing to do

with x86/x64 processors but allows the file package to exceed 4GB.

Another unique feature to the App-V format is that although directories may be specified as

entries in the typical zip file, Microsoft does not. The existence of directory folders is instead

inferred by the paths of file entries, and any folder that does not have a downstream file is not

included in an entry at all. Instead, these are listed inside an XML file that the client parses to

know about those folders3.

1 A generic format definition for the zip format can found from the originators of the ZIP format at

https://www.pkware.com/documents/casestudies/APPNOTE.txt
2 Optional; these two headers only used when Central Directory is encrypted. App-V does not encrypt the central

directory.
3 See Section 2.5.3 for details.

Entry 1

…

Entry N

Archive Decryption Header2

Archive Extra Data Header

Central Directory

Folders, Files, and Deployment Performance

Copyright © 2014 TMurgent Technologies, LLP

pg. 9

2.5.12.5.12.5.12.5.1 Central Directory MapCentral Directory MapCentral Directory MapCentral Directory Map

The Central Directory Map consists of a series of records, exactly one for each of the entries. The

format for Zip was complicated at some point by the need to

support larger archive files, called zip64 extensions. Originally,

fields to hold items like file offsets and sizes limited the overall

archive size to 4GB. The designers at PKware extended the

format in a way to be able to write code that can read both old

and new files. They chose to add optional indicators to signal

that there are additional 8-byte fields containing these offsets

and sizes. These fields are placed in “extra data” fields as part of

central directory items and entries in the main archive. App-V

always uses the zip64 extensions.

Each of these central directory items includes the relative file name (path and file name relative to

the start of the archive), compressed and uncompressed sizes, timestamps, CRC, file attributes,

extra data, and on offset within the file pointing to the start of the entry. For any software to work

with the compressed archive, it first needs to read the Central Directory.

When the App-V client first opens an appv file, it will typically read the first entry header signature

at the front of the file (to make sure it looks like a zip based file). Then, it will read from the end of

the file backwards until it can recognize the unique signature for the end of the central directory

record. It then finds and reads the zip64 record and locator. Using the offset located there, it then

reads in the central directory items (from first to last). By reading in this map, it knows where

every file and folder record entry may be found as an offset in the file.

A Central Directory record for App-V takes 72 bytes, plus the length of the relative file path. As

more files are added to the AppV file, the size of this central directory map grows. This affects

App-V performance by adding to the amount of the AppV file that must be streamed over during

package add.

Although not shown in this testing, the larger central directory map for the package also affects

memory use by the App-V client, which will want to keep the directory block cached in memory

(at least until the package is fully streamed to local cache). In SCS mode without local caching, this

directory block would need to be read from the remote share on first reference to the package

after each boot (whether by App-V Server Publishing or use).

Central Directory Item 1

…

Central Directory Item N

Zip64 end of central directory

record

Zip64 end of central directory

locator

End of central directory

record

Folders, Files, and Deployment Performance

Copyright © 2014 TMurgent Technologies, LLP

pg. 10

2.5.22.5.22.5.22.5.2 Use of Entries in the Zip based formatUse of Entries in the Zip based formatUse of Entries in the Zip based formatUse of Entries in the Zip based format

An entry consists of a header, optionally an encryption header

(not used in App-V), the (compressed) file data, and a data

descriptor record.

The file header includes some of the information needed by

NTFS, such as timestamps and CRCs, compressed and uncompressed sizes, relative file name, and

a variable length “extra field”. Much of this is duplicated in the Central Directory.

Although the zip format allows vendor extensions to add additional information about the entry

in the data descriptor, Microsoft seems to have chosen a different way to convey the additional

information it must provide the client, such as Pellucidity and deletion markers. This information

is conveyed in XML files that are part of the package.

The App-V package always contains a minimum set of seven files, six xml files and the registry.dat

file.

NOTE: The AppxBlockMap.xml file is the only of these files that does not get placed in the local

App-V package cache. The only way to see this file is to look in the archive.

These xml files are integral parts of the package definition. Two of these files, AppxBlockMap and

FilesystemMedata, contain information that is specific to the layout of the entries of the App-V

file, which is another reason why you can’t edit a package with a standard zip utility without

breaking the package.

But, frankly, the dependence on XML to convey all of this metadata is highly related to

deployment performance in App-V 5. In the previous generation App-V system, this streamed

metadata was encapsulated in the SFT file in binary form. XML requires considerable larger

Local file header

Optional encryption header

File data

Data descriptor

Folders, Files, and Deployment Performance

Copyright © 2014 TMurgent Technologies, LLP

pg. 11

transfers to convey the same information, and (more importantly) it usually requires much more

time to parse out XML data. Two of these files in particular, FilesystemMetadata.xml and

AppxBlockMap.xml, have a tremendous impact on certain packages4.

2.5.32.5.32.5.32.5.3 FilesFilesFilesFilesystemMetadata.xml and tystemMetadata.xml and tystemMetadata.xml and tystemMetadata.xml and the Special Effect of Empty Folders in Apphe Special Effect of Empty Folders in Apphe Special Effect of Empty Folders in Apphe Special Effect of Empty Folders in App----VVVV

Inside the App-V package is a special file named FileSystemMetadata.xml. This file contains all of

the information for the client deployment to pre-stage reparse points and an empty sparse map

for folders and files that will be “pre-staged” in the client cache when the package is added.

The FilesystemMetadata file contains three major elements:

• Filesystem: a list of every folder and file referenced as entries in the appv archive. This list

includes both the files and referenced parent folders as separate entries.

• EmptyDirectories: a list of all additional folders that is in the package but not included in

the archive because it had nothing other than other empty folders below it.

• OpaqueDirectories: a list of all folders that were marked “merge with local”.

The images that follow (next page) show entries in this XML file for two of the packages used in

the testing. The first had empty folders in the PVAD area, and the second in the VFS area5.

4 StreamMap.xml can also have deployment impact when stream training is configured during sequencing.
5 You might also notice how for the EnptyDirectories the VFS folders (and files) have short-names recorded while

PVAD ones do not. Oddly, both VFS and PVAD files listed in the Filesystem have short names. This design choice may

adversely affect certain integration situations, but is outside the scope of this research. I’m sure Nicke will run into it.

Folders, Files, and Deployment Performance

Copyright © 2014 TMurgent Technologies, LLP

pg. 12

Folders, Files, and Deployment Performance

Copyright © 2014 TMurgent Technologies, LLP

pg. 13

This is important to note as the size of this XML file affects processing performance during

deployment as the file is completely read in during the add phase.

2.5.42.5.42.5.42.5.4 AppXBlockMap and PerformanceAppXBlockMap and PerformanceAppXBlockMap and PerformanceAppXBlockMap and Performance

The AppXBlockMap contains information for each file with data in an entry.

When a file is deflated (the compression technique used in App-V), the deflation works on 64k

blocks of the original file. When decompressing, each block is individually decompressed. This

makes it possible to stream and decompress only those portions of the file needed at the time,

rather than decompressing the entire file or even entire archive. For each of the files with data,

the AppXBlockMap records the compressed size of each of the blocks.

This information is used by the streaming driver. When a portion of a file is needed, the driver

looks at the offset and size of the data needed relative to the uncompressed size and using the

information above can determine which block of the file to read in and decompress. Combined

with information from the Central Directory, the compressed data can be directly accessed in the

App-V file.

The more files present in the archive, the longer the relative file paths are, and the larger the

AppxBlockMap file becomes. Given that xml parsing performs poorly, and that this xml file is not

placed in the client package cache with the rest of the xml files, I am assuming that the client

compiles this data into some kind of binary form and caches it somehow. I have not detected

where this might be stored, so a possibility is that remains in memory until flushed out (or

reboot).

Folders, Files, and Deployment Performance

Copyright © 2014 TMurgent Technologies, LLP

pg. 14

3333 Summary of Summary of Summary of Summary of Where Impacts of Where Impacts of Where Impacts of Where Impacts of Folders and Folders and Folders and Folders and FilesFilesFilesFiles Are FeltAre FeltAre FeltAre Felt

Files and folders within a package affect performance in several ways:

• Each file (but not folder) in the package increases the size of the .AppV file central

directory map, causes more data to be streamed during the Add-AppVClientPackage step.

The file also adds a central directory entry, which may have more overhead than actual file

for small files. One individual file probably makes no difference in performance, but a large

number of them matters.

• Each file, and each folder, increases the size of the FileysystemMetadata.xml file, which

must be streamed and uncompressed during the Add-AppVClientPackage step.

• Each file (but not folder) in the package increases the size of the AppXBlockMap.xml file.

Each 64kb (uncompressed) of each file increases this a little bit more. This XML

information must be streamed prior to streaming any other data from the App-V file, so

this also affects the Add-AppVClientPackage step6.

• During Publish-AppvClientPackage step, the folder and reparse point for some of the

package Folders (but not files) are created in the App-V Cache. The impact of this is not

measureable in this test due to the limited number of folders involved.

• During Mount operations, whether command or background streaming, these

components, if not already natively in place, are laid down on the native system. This

includes creating folders (when not already done) and creating the reparse point, sparse

blocks, and streaming down the content. The creation of these sparse points represents

the third biggest slowdown of deployment performance that you can easily avoid

(removing unnecessary files) that was found in the testing that produced this research

paper series.

• Additional performance degradation at runtime (launch) was also detected, even when

the files/folders are not used. The source of this is unknown at this time.

Unlike when repackaging application installers, the cleanup of unnecessary files, folders, and

registry items from a package is not traditionally recommend for App-V sequencing (because we

tend to break too much by performing the cleanup). Removal of unnecessary files and folders,

however, can improve deployment performance. As will be seen in the companion paper on the

Virtual Registry, registry cleanup is still not recommended.

6 The presence of large file data also affects performance elsewhere, but this is covered in a separate research paper

on Big File Performance.

Folders, Files, and Deployment Performance

Copyright © 2014 TMurgent Technologies, LLP

pg. 15

4444 Testing Strategy UsedTesting Strategy UsedTesting Strategy UsedTesting Strategy Used

This section provides details about how the testing was performed.

4.14.14.14.1 About the Testing PlatformAbout the Testing PlatformAbout the Testing PlatformAbout the Testing Platform

The testing results depicted in this paper are based on:

 App-V 5.0 SP2 with HotFix 4 running on a Windows 7 SP1 x86 virtual machine.

The testing was performed in an isolated environment using a Microsoft 2012 R2 server with

Hyper-V. The server has 24 processors and 64GB or RAM. To minimize external impacts, this

server utilizes local storage and contains a VM with the domain controller. App-V Package sources

were located on a share on this host.

The Test VM used had 2GB of RAM and was given 2 virtual CPUs. The App-V Client is configured

for Shared Content Store mode (which disables background streaming).

4.24.24.24.2 About Test Packages and About Test Packages and About Test Packages and About Test Packages and ““““Streaming ConfigurationStreaming ConfigurationStreaming ConfigurationStreaming Configuration””””

All Test packages used are specially constructed software packages that I developed. These

packages are generally stripped down to a bare minimum, except for an overabundance of the

one particular things we want to measure when using this package. In many cases, this means

custom software that I developed for the purpose of the test.

Unless specifically noted, each package was sequenced and configured for streaming by not

launching anything during the streaming training configuration phase of the sequencer. This

means that, barring mounting operations, almost everything in the package will fault-stream

(stream on demand).

4.34.34.34.3 About the Testing MethodsAbout the Testing MethodsAbout the Testing MethodsAbout the Testing Methods

All tests are automated using significant sleep periods before each portion of the testing to allow

all systems to settle down, and warm-up of the external components (hypervisor/fileshare) and

within the OS (App-V Client and drivers) are performed. The test process consists of

• A Test Cycle that consists of a series of Test Passes.

• Each Test Pass consists of a number of Test Packages.

• Each Tested Package is tested using a series of actions and measurements.

A Tested Package, consists of a series of actions, always preceded by a significant sleep period to

allow system background processes to settle down.

Folders, Files, and Deployment Performance

Copyright © 2014 TMurgent Technologies, LLP

pg. 16

A Test Pass always starts from a freshly booted snapshot and with a dummy Test Package to warm

up the App-V Client and Driver sub-systems. The results of this dummy package are not used.

A Test Cycle always starts with a Test Pass to warm up the external components of the Hypervisor

and Windows File Share. Because the packages are relatively small compared to the amount of

memory available, the packages are likely retained in memory in the Windows Standby Lists after

the initial Test Cycle.

These are described as follows, from the bottom up.

4.3.14.3.14.3.14.3.1 Test PackageTest PackageTest PackageTest Package

For a given Test Package, the series of actions includes:

• Waiting

• Add-AppVClientPackage

• Waiting

• Publish-AppVClientPackage

• Waiting

• [Optionally Mount-AppVClientPackage7]

• Waiting

• First run (launch “cmd.exe8 /c time /t” inside the virtual environment).

• Waiting

• Second run (launch “cmd.exe9 /c time /t” inside the virtual environment).

The time required for each of the actions to complete is recorded.

4.3.24.3.24.3.24.3.2 Test PassTest PassTest PassTest Pass

A Test Pass consists of testing multiple Test Packages as follows:

• Reverting the test VM to a snapshot.

• Waiting for the Hypervisor to settle.

• Booting the VM and logging in.

7 With SCS enabled, mounting the package does result in the actual file content being stored in the App-V file cache. I

test in SCS mode both with and without mounting to better delineate the cause of performance slowdowns on a

package.
8 This is used rather than a program in the package to produce a comparable time that varies based on special actions

that the client must perform during virtual environment startup and shutdown due to the package content.
9 The client is also known to perform special actions the first time a virtual environment is used, so the second run is

used for comparison to the first run.

Folders, Files, and Deployment Performance

Copyright © 2014 TMurgent Technologies, LLP

pg. 17

• Waiting.

• A series of actions and measurements on a warm-up package. These results are never

used, it is only performed to warm up the client (client service, drivers, and WMI) and to

ensure that each subsequent package fairly tested under similar conditions.

• Waiting.

• A series of actions and measurements on the first package.

• Waiting.

• A series of actions and measurements on the second package.

• Etc…

• Recording results

4.3.34.3.34.3.34.3.3 Test CycleTest CycleTest CycleTest Cycle

Finally, A Test Cycle consists of several consecutive test runs of the same Test Pass. The first pass is

used to “warm up” external systems and achieves a relatively consistent amount of caching by the

server. The results of this pass are not used, but the results of the remaining passes are averaged

to produce results. A Test Cycle typically requires a full day to complete.

4.44.44.44.4 About the Test Results AccuraAbout the Test Results AccuraAbout the Test Results AccuraAbout the Test Results Accuracycycycy

As careful as I attempt to be to eliminate variability in the results, there is a fair amount of

variability in results between two passes.

Due to the nature of the background interruptions affecting the results, the impact on result

accuracy is felt much more on measurements that are shorter in duration than those that are

longer. With measurements that are sub-second, this can produce results that typically vary by as

much as +/-10% from the average.

Instead, I use an approach to test with a sufficient number of test cycles and select the minimum

value seen on any of the tests. The more repetitions that are made, the better this minimum

value represents the time it takes for App-V to complete the task without the effects of any

extraneous background interference.

Folders, Files, and Deployment Performance

Copyright © 2014 TMurgent Technologies, LLP

pg. 18

5555 Test Packages UtilizedTest Packages UtilizedTest Packages UtilizedTest Packages Utilized

This section details the packages used in testing.

All packages used in this test contain no real application. A script was used during sequencing to

create the number of folders and small files to be added to the package. Scripts also contain a

shortcut to an external cmd prompt for debugging. During sequencing, some background activity

by the OS resulted in additional file/registry captures, but the amount of these items is quite small

when compared to the number of intentionally added items.

5.15.15.15.1 WarmWarmWarmWarm----up Pup Pup Pup Packackackackaaaagegegege

This package is primarily used as the first package in a Test Pass, to warm up the OS and App-V

Client components and dependencies10.

5.25.25.25.2 LotsLotsLotsLotsOfNothingOfNothingOfNothingOfNothing (Baseline)(Baseline)(Baseline)(Baseline)

This is a minimal App-V Package.

In developing this package, I discovered that there is an issue with the App-V Client in that there

appears to be some sort of undocumented minimal package requirements. If you create a

package with no registry entries, no files, and no integrations, the Add-AppVClientPackage cmdlet

will error out with error 700002.

Therefore this package consists of one HKLM registry key, one HKCU registry key, one text file in

the PVAD folder, and one shortcut (to the text file).

The package was tested to produce a baseline for “absolute minimum” of what the App-V Client

can do. These numbers are useful in determining the amount of overhead that the VC Runtimes

place on the system.

10 When conducting tests that use mounting, I found it necessary to warm up the system without mounting this

package. It appears that the first client activity after boot requires additional time to warm up the client, possibly

loading drivers. But I also found that mounting this package causes an odd additional 1 second hit to any

subsequently Add-AppVClientPackage commands (even after settling time). This issue only seems to exist with this

package, and mounting other packages does not affect subsequent Add cmdlets. The cause of this is unknown.

Folders, Files, and Deployment Performance

Copyright © 2014 TMurgent Technologies, LLP

pg. 19

5.35.35.35.3 LotsOfLotsOfLotsOfLotsOfFilesFilesFilesFiles_PVAD_PVAD_PVAD_PVAD

This package consists of 50 folders under the PVAD folder, each containing 1000 text files, for a

total of 50,00011 files. Each text file contains two characters (“hi”). These files are not referenced

when launching the package.

5.45.45.45.4 LotsOfFolders_PVAD_EmptyLotsOfFolders_PVAD_EmptyLotsOfFolders_PVAD_EmptyLotsOfFolders_PVAD_Empty

This package consists of a package consisting of 50,000 folders under the PVAD folder, each

containing no files.

5.55.55.55.5 LotsOfFolders_VFS_EmptyLotsOfFolders_VFS_EmptyLotsOfFolders_VFS_EmptyLotsOfFolders_VFS_Empty

This package consists of 50,000 folders under a VFSd folder placed at the root of the C: drive, each

containing no files.

5.65.65.65.6 LotsOfFolders_PVAD_WithOneFileLotsOfFolders_PVAD_WithOneFileLotsOfFolders_PVAD_WithOneFileLotsOfFolders_PVAD_WithOneFile

This package consists of 50,000 folders under the PVAD folder, each containing 1000 text files, for

a total of 50,000 folders and 50,000 files. Each text file contains two characters (“hi”). These files

are not referenced when launching the package.

5.75.75.75.7 LotsOfFolders_VFS_WithOneFileLotsOfFolders_VFS_WithOneFileLotsOfFolders_VFS_WithOneFileLotsOfFolders_VFS_WithOneFile

This package consists of 50,000 folders under a VFSd folder placed at the root of the C: drive, each

containing 1000 text files, for a total of 50,000 folders and 50,000 files. Each text file contains two

characters (“hi”). These files are not referenced when launching the package.

5.85.85.85.8 LotLotLotLotsOfFiles_DsOfFiles_DsOfFiles_DsOfFiles_D50505050_F_F_F_F1000100010001000

This package consists of 50 folders with 1,000 file each, all in the PVAD folder. Each text file

contains two characters (“hi”). These files are not referenced when launching the package.

11 The actual number for this package turned out to be slightly smaller due to a scripting bug that generated the

package. It was nearly 49,000. This bug did not affect the other packages used.

Folders, Files, and Deployment Performance

Copyright © 2014 TMurgent Technologies, LLP

pg. 20

6666 Detail Test ResultsDetail Test ResultsDetail Test ResultsDetail Test Results

I created a tool called “AppV File Investigator12” to pull out some details of the packages. A

summary table of some details about the packages:

 Baseline Folders

(PVAD)

Folders

(VFS)

Both

(PVAD)

Both (VFS) Files

(PVAD)

Folders 0 50,000 50,000 50,000 50,000 ~50

Files 0 0 0 50,000 50,000 ~50,000

AppV Size 29,696 145,839 850,231 9,851,815 12,442,985 13,179,735

Directory Block Size 722 740 3,236 4,492,100 6,089,775 6,561,151

FilesystemMetadata

Compressed
244 124,377 299,746 267,631 146,988 336,527

FilesystemMetadata

Uncompressed
364 1,639,395 5,480,500 5,430,452 4,689,711 3,377,295

AppxBlockMap

Compressed
615 1,606 6,619 162,106 188,131 183,304

AppxBlockMap

Uncompressed
1,118 3,020 14,425 6,503,220 8,095,392 7,463,147

Entries 8 8 27 50,027 50,009 48,958

Empty Folders 0 50,000 50,000 0 0 0

Opaque Folders 0 0 0 50,000 1 49

Regarding the “Number of entries”: The App-V file always contains a minimum of the 6 xml files

above the root, plus the virtual registry data file. Our packages have a minimum of 8 entries

because they also contain a shortcut link and icon file (created by the sequencer for the shortcut

to the cmd prompt)13.

12 Available from TMurgent website. This functionality is now directly available in the AppV_Manage tool also.

13 Some packages also captured additional items which I did not clean up. There was also a scripting mistake made in

the 50 folder/50,000 file package creation that reduced the number of files slightly.

Results reported are based on an ideal test environment. Performance impacts identified

in this paper will be very different in production environments. Specific numbers are only

useful in comparison to numbers from other research papers in this series!

Folders, Files, and Deployment Performance

Copyright © 2014 TMurgent Technologies, LLP

pg. 21

From this table we can see that the empty folders are listed only in the FilesystemMetadata xml

file, and these do not have actual entries in the directory. Although the compression format does

allow for the definition of folders, it seems that App-V chose not to include them as independent

entries in the App-V file. Where there

is a file, it will have an entry, including

its relative path as part of the entry.

Those folders without any files

underneath them at some level to

generate an induced path definition

are then called out in the

FileystemMetadata file.

Because the folder is not defined in

the directory, there is also no place to

store additional attributes. This

design choice led the development team to encode the Pellucidity attribute for the folders inside

the FilesystemMetadata file as well. These are the “OpaqueDirectories” elements of the

FilesystemMetadata file.

This, in part14, is why you should not attempt to edit an App-V package using a standard zip utility.

14 The client and management server also check for other “special indicators” to detect outside editing. Ultimately,

the stream information in the App-V XML file must reflect compressed record offsets precisely, which would be out of

sync if the compressed file is saved using a non App-V aware editor utility.

ALTHOUGH BASED ON THE ZIP

COMPRESSION FORMAT, A COMPLETE

FILESYSTEM LISTING MUST HAVE THE EMPTY

FOLDERS AND PULLUCIDITY SETTINGS OF THE

FILESYSTEMMETADATA.XML FILE ADDED TO

THEM.

Folders, Files, and Deployment Performance

Copyright © 2014 TMurgent Technologies, LLP

pg. 22

6.16.16.16.1 SCS Mode Testing withSCS Mode Testing withSCS Mode Testing withSCS Mode Testing withoutoutoutout MountingMountingMountingMounting

Tests were performed with SCS mode enabled to show the impact on the various combinations of

unused files and folders (they are not accessed at runtime by the “app”). The difference from the

baseline package is given, divided by the total number of file+folder objects.

A VFS penalty for folders is seen both at the time of Add package, and at runtime.

The Add Package impact is likely due to the larger FilesystemManifest.xml file and more xml

parsing required.

As the files are not being accessed, the cause for increased runtime for the VFS cases is not

known. Very surprising is that subsequent launches were longer. This appears to be due to

something that changed in HF4 as I do not recall seeing this before.

Folders, Files, and Deployment Performance

Copyright © 2014 TMurgent Technologies, LLP

pg. 23

6.26.26.26.2 SCS Mode Testing with MountingSCS Mode Testing with MountingSCS Mode Testing with MountingSCS Mode Testing with Mounting

Tests were also performed with mounting.

Folders, Files, and Deployment Performance

Copyright © 2014 TMurgent Technologies, LLP

pg. 24

6.36.36.36.3 Cached Mode without MountingCached Mode without MountingCached Mode without MountingCached Mode without Mounting

These are results for running with SCS disabled (and automount disabled).

Folders, Files, and Deployment Performance

Copyright © 2014 TMurgent Technologies, LLP

pg. 25

6.46.46.46.4 Cached Mode with MountingCached Mode with MountingCached Mode with MountingCached Mode with Mounting

Results from cached mode after mounting.

Folders, Files, and Deployment Performance

Copyright © 2014 TMurgent Technologies, LLP

pg. 26

6.56.56.56.5 Impact AnalysisImpact AnalysisImpact AnalysisImpact Analysis

In situations where deployment performance is crucial, such as VDI scenarios, these results show

the third most15 dramatic degradation in deployment performance of any of the tests run in this

series.

There are numerous lessons to learn from this data.

6.5.16.5.16.5.16.5.1 Impact of unnecessary filesImpact of unnecessary filesImpact of unnecessary filesImpact of unnecessary files

The addition of a large number of unnecessary files in the package greatly affects Add-

AppvClientPackage. The impact hits this step in four parts:

• A larger App-V Central Directory to stream and read.

• A larger AppxBlockMap.xml file to read and parse.

• A larger FilesystemMetadata.xml file to stream and parse.

• More filesystem objects to pre-stage in the App-V cache.

This impact is (with the exception of the impact of increased AppxBlockMap size) unrelated to the

size of the file. Calculations16 from the

data allow for an estimate of the

overhead for each file to the Add-

AppVClientPackage step:

These files have a more significant impact to mounting operations, whether performed through

the mount cmdlet or via background

automatic loading. This was measured

in the tests to be about 1ms per small

file. Obviously larger files will take

longer, but there is a lot of overhead in

establishing the first portion of the file.

15 VC Runtime components being the most dramatic.
16 The difference between 50 folders and 5000 folders with the same number of files indicates that folders containing

files have a 0.03ms effect. Therefore the d50f1000 result of 0.29ms is very close to the straight file effect.

EACH EXTRA FILE ADDS LESS THAN 1/3MS

EACH TO THE ADD-APPVCLIENTPACKAGE

STEP

EACH EXTRA FILE ADDS ABOUT 0.7 TO

0.9MS TO THE MOUNT STEP , PLUS

WHATEVER TIME IT TAKES TO STREAM ITS

CONTENTS

Folders, Files, and Deployment Performance

Copyright © 2014 TMurgent Technologies, LLP

pg. 27

There also appears to be a smaller, but measurable, impact during the first run of the package

(even though the file is not used) when the file is in the VFS. I did not look into the cause of this

impact, but perhaps it was because the files used in the test were all of .txt extensions

Subsequent runs of the package

appear to have a negative

performance affect also.

It is relatively easy to identify and

remove at least some of the unused files in a package, especially when it comes to some standard

things to look for, such as cached copies of installers. Greater gains are likely to be found in larger

software packages, however, performing this work would require a good understanding of the

specific application and its files.

In some cases, instead of deleting files outright, it might be possible to configure the application

to use an external folder for storage of these items (presumably read-only). When the application

does not have such a configuration option, it might also be possible to replace the folder inside

the package with a directory junction point to an external share to contain the items. Such

extreme measures should probably only be taken when there are very large numbers of files and

deployment performance in App-V for the package proves unacceptable to users without it.

6.5.26.5.26.5.26.5.2 Impact of Unnecessary FoldersImpact of Unnecessary FoldersImpact of Unnecessary FoldersImpact of Unnecessary Folders

The addition of unnecessary folders also negatively influences deployment performance.

Individually the impact is greater than that of an unnecessary file, however, it is unlikely that there

are a large number of these unnecessary folders present in a package.

The impact hits this step in three parts:

• A larger AppxBlockMap.xml file to read and parse.

• A larger FilesystemMetadata.xml file to stream and parse.

• More filesystem objects to pre-stage in the App-V cache.

EACH EXTRA FILE ADDS ABOUT .05MS TO

THE FIRST RUN, AND .10MS TO ADDITIONAL

RUNS.

Folders, Files, and Deployment Performance

Copyright © 2014 TMurgent Technologies, LLP

pg. 28

Unlike the file, the folder does not affect the size of the Central Directory. The larger overhead

instead likely comes from the

client/driver implementing the

information about these folders from

the FilesystemMetadata file in its

memory structures.

At first run, the VFS folders cause an additional impact. The cause of this is unknown at this time.

The performance hit on PVAD

folders at runtime is only

barely measurable.

Empty folders, although probably limited in numbers, are probably safer to remove in most cases.

The chances are that these folders were created to hold optional components not present or run-

time data. Deleting these folders tends to not break things, because:

• Typical code to look for files inside the folder acts the same whether the file is not present

or the folder is not present.

• Typical code to write a file inside the folder will generate the folder when not present.

The latter point depends upon the developer writing reasonable code, but most of the time they

will do this correctly.

Identifying the empty folders is also easy to do. Just rename the App-V file, pop open the

FilesystemMetadata.xml file and read the list!

6.5.36.5.36.5.36.5.3 The Effect of VFSThe Effect of VFSThe Effect of VFSThe Effect of VFS

It turns out that having things in the VFS, instead of in the PVAD folder, has a much larger impact

on deployment (and runtime) performance than I would have expected.

One portion of this deployment effect comes from the things having longer relative paths. This

increases the size of the overall App-V file, the size of the Central Directory map, and the size of

each of the XML files where things are referenced.

EACH EXTRA FOLDER ADDS ABOUT 0.03MS

EACH TO THE ADD-APPVCLIENTPACKAGE

STEP

EACH EXTRA VFS FOLDER ADDS ABOUT .15MS TO THE

FIRST RUN, BUT ONLY .07MS TO ADDITIONAL RUNS.

Folders, Files, and Deployment Performance

Copyright © 2014 TMurgent Technologies, LLP

pg. 29

Still, the effect is greater than I can predict from the other behaviors I observed during the testing.

Perhaps this is an area for further research someday, especially for the VFS files.

Add-AppvClientPackage: .07ms/folder, .004ms/file

First Run: .15ms/folder, .37ms/file

Subsequent Run: .06ms/folder, .35ms/file

At this point, this information is probably not actionable. There will be a few packages that install

an overly large component into the VFS (for example Business Objects). And while it might be

tempting to just designate that folder as the PVAD and let the main, smaller, application be VFSd

to improve deployment performance, you stand a good chance of having other issues, for

example if you use connection groups. Pulling that VFS information into a separate package might

be considered, but the overall performance hit of deploying another package far outweighs the

small impacts reported above.

Folders, Files, and Deployment Performance

Copyright © 2014 TMurgent Technologies, LLP

pg. 30

7777 About This Research Paper SeriesAbout This Research Paper SeriesAbout This Research Paper SeriesAbout This Research Paper Series

This research paper is part of a series of papers, released by TMurgent Technologies, which

investigate the performance impacts that certain application contents can have in the deployment

of Microsoft App-V 5 packages.

Through these papers, we can better understand what areas to focus on when packaging

applications for App-V when deployment and end-user experience is important. Additionally, with

an understanding of these papers you can better target a specific package that is performing

poorly and prioritize your efforts to improve it.

TMurgent Technologies, LLP is based in Canton, MA, USA; just 17 miles south of the offices where

Microsoft develops the App-V product. TMurgent’s Tim Mangan has a long history with the

product, having built the original version at Softricity more than a dozen years ago. TMurgent is

well known in the App-V community as a source for the best training classes on App-V as well as

an endless supply of tools and information. More information is available at the website,

www.tmurgent.com

