

Copyright © 2014 TMurgent Technologies, LLP

Effects of “Fonts” in App-V 5 SP2 with

HotFix4 Deployment Performance

TMurgent App-V Performance Research Series

Can You REad This?

June, 2014

FONTS AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

Table of ContentsTable of ContentsTable of ContentsTable of Contents

1 Introduction .. 4

2 Background on Deployment Performance .. 5

3 Background on Windows and Fonts .. 6

3.1 Natively Installed Fonts and Performance .. 7

3.2 Windows 7 and Font Limits ... 8

3.3 App-V 5 and the Font Extension / Subsystem ... 8

3.4 App-V 5 and Font Limits ... 9

3.5 Detecting Fonts inside a Package .. 9

4 Summary of Where Impacts of Virtual Fonts Are Felt .. 11

4.1 Sequencer Limitation with Fonts ... 11

4.2 Working around the Windows Font Limitation ... 11

4.3 Standard Scenario Testing results .. 12

4.4 Results Interpretation .. 13

4.5 Improvement Options .. 15

5 Testing Strategy Used ... 16

5.1 About the Testing Platform .. 16

5.2 About Test Packages and “Streaming Configuration” ... 16

5.3 About the Testing Methods ... 16

5.3.1 Test Package .. 17

5.3.2 Test Pass .. 17

5.3.3 Test Cycle .. 18

5.4 About the Test Results Accuracy .. 18

6 Test Packages Utilized ... 19

6.1 Lots_OfNothing (Warmup) .. 19

6.2 Lots_OfFonts_RenamedPVAD ... 20

6.3 Lots_OfFonts_RenamedVFS .. 21

6.4 Lots_OfFonts_CopiedPVAD.. 21

6.5 Lots_OfFonts_CopiedVFS ... 22

6.6 Lots_OfFonts_Installed .. 22

7 Detail Test Results ... 23

7.1 SCS Mode Without Mounting .. 24

7.2 SCS Mode Testing with Mounting ... 26

FONTS AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

7.3 SCS Mode Disabled, No Mounting .. 28

7.4 SCS Mode Disabled, Mounting Used ... 29

8 About This Research Paper Series.. 30

FONTS AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

pg. 4

1111 IntroductionIntroductionIntroductionIntroduction

The purpose of this research paper is to document the effects that fonts have in Microsoft App-V

Virtual Application Packages. But along the way we get to learn a bunch of interesting things

about fonts.

The effort is squarely aimed at answering questions on how the addition of Fonts in a virtual

application package affect performance.

This work is part of a series of efforts to characterize the impact that different application

elements have on the performance of virtual applications under App-V 5.

Most readers of this research will find themselves satisfied with reading the second and third

section of this paper. The remaining sections detail the testing process, packages used, and

provide further test details and additional findings.

FONTS AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

pg. 5

2222 Background on Deployment PerformanceBackground on Deployment PerformanceBackground on Deployment PerformanceBackground on Deployment Performance

Being the first of the 8 papers to really deal with deployment performance (the BigFile paper was

more about runtime performance), I should spend a little time talking about deployment

performance in general.

Moving from App-V 4.* to App-V 5 originally caused a lot of enterprises heartaches over the

slower deployment times. Especially in a non-persistent VDI scenario, the time to complete

package deployment (usually called “publishing time” by most people, but since “publish” is one

of the steps I prefer to call it “deployment time”) was just too long in App-V 5.0.

Microsoft made a few adjustments in the App-V 5.0 SP2 release, but it wasn’t until Hot Fix 4 for

SP2 that they made significant progress. While I have not made comparison tests myself, the

consensus seems to be that with the Hot Fix 5.0 is generally as good or better than 4.6 when it

comes to deployment time. But it depends on the package, and we can always use better.

What consists of deployment time can vary from one user to another. It depends mostly on the

environment that they receive the applications.

Those with non-persistent (or semi-persistent) desktops are mostly concerned with the time to

add and publish the package. Assuming that Shared Content Store Mode (SCS) is in use (likely in

non-persistent VDI and possible with RDS/XenApp implementations), first time launch

performance is also very important to them.

But those with persistent desktops generally are more concerned with launch time of the virtual

package than deployment time which only happens once.

The tests in this series use packages that are created without training the publishing streaming

block. They are tested with SCS enabled and disabled, and with and without mounting.

Normally, with SCS enabled, no mounting is performed. But you can train the sequence to include

files in the publishing block to ensure that they are cached locally. Plus, in a pinch you can script a

mount command of a particularly important package or include in the OS disk image, to improve

the performance.

Normally, with SCS disabled, you would have AutoLoad enabled to perform background streaming

to the local cache. These tests run with AutoLoad disabled so that you can see the performance

when the user doesn’t wait long enough for AutoLoad to complete.

FONTS AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

pg. 6

3333 Background on Windows and FontsBackground on Windows and FontsBackground on Windows and FontsBackground on Windows and Fonts

Typography and the design of typefaces used for printing, is an ancient art-form. Wooden blocks

with hand-carved letters created by Calligraphers were used for printing at least as far back as the

Han Dynasty (206AD). Western typography really gets going around 1440 when Gutenberg

invented the first western printing press using movable type fonts. Today, the use of a particular

typeface is often used to emphasize branding and style by people and companies. The computer

has embraced this concept with fonts, which are software file definitions characterizing a typeface

by defining a large set of standard parameters that allow the computer to produce the typeface,

both on-screen and to printers to produce hard copy.

Initially, the computer operating system provided one (or more) fonts for screen display and that

was all you got. When technology advanced enough to allow additional fonts to be added on

demand, the fonts made available by third parties followed the licensing model for physical

typesets for printing and required licensing of the fonts themselves.

One of the most popular providers of loadable fonts was from Adobe Systems. These fonts used a

format for the font definition called ATM (Adobe Type Management) and ATM fonts were licensed

by a large number of companies. These fonts are generally licensed on a per-user basis, which

leads to interesting situations involving Remote Desktop Services (formerly Terminal Services)

scenarios. There are still quite a few companies continuing to use some per-user licensed ATM

fonts today. Traditionally, App-V has been used in these situations to limit font exposure to a

subset of users in these situations by virtualizing the font with the application that requires it –

and then limiting access to the application by those with a license to use the font.

Microsoft, for their part, developed a secondary format and built support for it inside the OS. This

format, called True Type Font, allowed for a single font file to be used to depict the font at a

variety of scales. Whereas you needed a different ATM font definition file for each point size, a

single TTF font file could render multiple point sizes. Microsoft also released a number of fonts

with the operating system itself. Third parties have also produced thousands of additional TTF

based fonts, many of which are free to be installed on Microsoft operating systems.

Companies often standardize on a small number of fonts for use in all of their external

communications, as part of their branding. There are applications and situations, however,

demanding a large pallet of fonts be available to the user. AutoCAD 201, for example, 5 installs

over 100 fonts. But the need for even larger numbers of fonts is especially true for people

creating advertising or other forms of media for others. We often think of these jobs as using

Apple computers rather than Windows, but now I think I know why. But we’ll get t that later.

FONTS AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

pg. 7

3.13.13.13.1 Natively Installed Fonts and PerformanceNatively Installed Fonts and PerformanceNatively Installed Fonts and PerformanceNatively Installed Fonts and Performance

While fonts are not generally considered to be a major contributor to poor performance, the

impact of adding a large number of fonts can be measured. And you can run a simple test to see

this effect.

When a font is installed, the font file itself is copied to a specified location, and registry entries are

added so that it may be found. When an application wants to use a font, it generally does not

know if that particular font file will be present. Microsoft designed the API for developers to help

solve this. The developer (generally) does not ask for the specific font file. Instead, the developer

makes an API request filling out the parameters that define the font they want. The developer

may be as detailed in the request as they want. If they want a particular font, they fill out all of

the detail matching the parameters for that font. The API will perform a search on all of the

installed fonts and return the font that best matches the requested font. So if the developer asks

for a 12 point font in the Times Roman family with serifs, and for some unknown reason someone

had uninstalled that standard font from a system, the API will return the next best thing (for which

most of us would not notice).

A key point here is that when an application installs a font, it installs it to the system, making it

available to any application looking for a font to use. So whenever any app looks for the font it

wants, the library call takes a bit longer to return the best matching font.

To see the effect of having a large number of fonts on a system, you would perform the following

test on a system. The system requires a program that shows you all of the fonts, similar to the

way Microsoft Word does when you click on the Font selection pull-down menu. In this case, the

program manually reads the registry entries to determine font names, determines the full set of

parameters needed to get this font, calls the API to get that font, and then uses that font to

display the name in the menu itself.

• Reboot, Login, start Word

• Pull-down the Font selection menu, timing how long it takes to display.

• Install an additional hundred fonts.

• Reboot, Login, start Word

• Pull-down the Font selection menu, timing how long it takes to display.

The difference in time to display the menu will be noticeable to the naked eye. Of course it only

works once as Word will keep the font open for re-use.

FONTS AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

pg. 8

This test leads me to the first conclusion about fonts and performance:

Because of this effect, virtualizing the

font inside the package can be a

performance advantage. By keeping

applications that do not need the extra

fonts from seeing them we speed up

requests for fonts, but, this is only an

advantage when the virtualizing agent

doesn’t add too much overhead to

handle the virtual fonts. Prior to App-V

5, this was the case, but as you can see in this research paper, the new font subsystem in

App-V 5 is more impactful and eliminates this advantage. Still, there are licensing

advantages to virtualizing those fonts requiring font licenses.

3.23.23.23.2 Windows 7 and Font LimitsWindows 7 and Font LimitsWindows 7 and Font LimitsWindows 7 and Font Limits

In researching fonts on Windows, I found that there appears to be an undocumented limit on the

number of fonts that may be installed. This limit appears to be around 1000, at least on my test

platform of Windows 7 SP1 x86. There are reports of the limit being much lower than 1000, as

low as 400, but my testing as shown a limit around 1000. As the OS comes with about 130 fonts,

this effectively limits you to adding about 870 fonts in a single package.

1000 fonts is certainly a lot of fonts, and far more than most people really need. But there are a

few large programs that install hundreds of fonts as part of the installation. And certainly

someone in the business of advertising or marketing may want a much larger pallet of fonts to

work with to perform their daily job. So the 1000 font limit, while unimportant to most of us is

run into by some users. This limit may be one of the reasons these people use Apple Computers.

3.33.33.33.3 AppAppAppApp----V 5 and the Font Extension / SubsystemV 5 and the Font Extension / SubsystemV 5 and the Font Extension / SubsystemV 5 and the Font Extension / Subsystem

One of the specialized subsystems in App-V 5 is the font subsystem. The sequencer is designed to

detect the presence of fonts inside a package and identifies these as Font Extension Points. Unlike

many of the App-V 5 extension points, fonts considered “internal” extensions, meaning that only

the virtualized application has access to the fonts.

Because of this, fonts affect performance as files inside a package, plus a run-time performance

hit when the package is started. This is addition to the small runtime performance hit of a font

being available to an application, but at least this hit is now limited to the virtualized application

and not all applications on the OS.

INSTALLING FONTS NATIVELY TO THE OS HAS

A TINY, AND YET MEASUREABLE, NEGATIVE

IMPACT ON PERFORMANCE TO MOST EVERY

APPLICATION ON THE OS, EVEN IF THE APP

DOESN’T WANT TO USE THE ADDITIONAL

FONTS.

FONTS AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

pg. 9

I should note that font installation involves both a registry change and a copy of the font file into a

sub-folder of the Windows directory. Because of the file copy, the font files themselves will be in

the VFS area. As reported in a different research paper in this series, the inclusion of these font

files in the VFS cause specific deployment performance changes even if the virtual font sub-

system is disabled.

3.43.43.43.4 AppAppAppApp----V 5 and Font LimitsV 5 and Font LimitsV 5 and Font LimitsV 5 and Font Limits

The App-V Sequencer automatically detects fonts and produces the list as part of the

AppXManifest file, for special processing by the client font subsystem.

I have seen (in 5.0 SP2) that not only does this detection method used in the sequencer detect

any installed fonts, it manages to detect all font files inside the package, whether or not the font

was actually installed. This is probably a bug in the sequencer logic, as although the additional

fonts are processed by the font subsystem at the client, the virtual application still cannot use

them without registration. While I normally do not advocate routine “cleanup” of packages in

App-C, this leads to finding number 2:

3.53.53.53.5 Detecting Fonts Detecting Fonts Detecting Fonts Detecting Fonts insideinsideinsideinside aaaa PackagePackagePackagePackage

How do you detect installed and uninstalled fonts in the package? You can look at the path

location of FONT files shown in the DeploymentConfig or internal AppXManifest file for the App-V

package.

ALTHOUGH IT RARELY HAPPENS, IF ANY FONT

FILES ARE IN THE PACKAGE BUT THE FONT IS

NOT REGISTERED YOU SHOULD PROBABLY

CLEAN THEM OUT FOR OPTIMAL

PERFORMANCE.

FONTS AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

pg. 10

When fonts are installed, they are copied to the Windows/Fonts folder (variablized as [{Fonts}]),

so if the sequencer detects non-installed font files, the virtual font listing in these files will show a

different path. The images below are taken from the AppV_Manage tool where you can view the

AppXManifest file. The package on the left shows installed font entries, the package on the right

shows detected fonts that were not installed:

You can also see a summary of detected fonts using the Analyze button of AppV_Manage:

FONTS AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

pg. 11

4444 Summary of Summary of Summary of Summary of Where Impacts of Virtual Fonts Are FeltWhere Impacts of Virtual Fonts Are FeltWhere Impacts of Virtual Fonts Are FeltWhere Impacts of Virtual Fonts Are Felt

This section highlights the most important results. Additional details appear in subsequent

sections, however many readers will stop reading after this section.

4.14.14.14.1 Sequencer Limitation with FontsSequencer Limitation with FontsSequencer Limitation with FontsSequencer Limitation with Fonts

The Sequencer (as of 5.0 SP2) has a bug in that the total number of font files it detects (whether

registered or not) is limited to somewhere under 1000, possibly around 800. If you exceed the

limit, the sequencer will crash at the end of the configuration phase. This is finding number 3:

4.24.24.24.2 Working around the Windows Font LimitationWorking around the Windows Font LimitationWorking around the Windows Font LimitationWorking around the Windows Font Limitation

One aspect of the testing was to determine the maximum number of fonts supported. A single

App-V package is limited by the roughly 1000 fonts supported by Windows. Since the OS starts

with nearly 130 fonts, this causes a practical limit of about 870 in a single package (ignoring the

sequencer limit bug). However, it is possible to use Connection Groups to get beyond this limit. I

have successfully created a connection group with over 6000 active fonts. If I needed them I

could probably get all 60,000 fonts that I

originally downloaded working in a

single connection group. Bring on the

Mac users!

This leads to finding number 4:

A SINGLE APP-V PACKAGE IS LIMITED TO

AROUND 870 FONTS BY WINDOWS.

PERFORMANCE ASIDE, THERE APPEARS TO BE NO

LIMIT TO THE NUMBER OF ACTIVE FONTS IN A

CONNECTION GROUP, ALLOWING US TO EXCEED

THE NATIVE LIMIT OF ABOUT 1000 FONTS.

THE SEQUENCER WILL CRASH IF YOU ADD TOO

MANY FONT FILES IN THE PACKAGE, WHETHER OR

NOT THEY ARE INSTALLED. THIS LIMIT IS

SOMEWHERE BETWEEN 800 AND 1000.

FONTS AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

pg. 12

4.34.34.34.3 Standard Scenario Standard Scenario Standard Scenario Standard Scenario Testing resultsTesting resultsTesting resultsTesting results

The testing results, comparing the addition of installed fonts to a package to an identical package

without the installed fonts. Three different common scenarios are shown.

FONTS AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

pg. 13

For completeness, I added a fourth scenario, which might represent launch times when SCS mode

is used but pre publish/caching is performed of the app using an imaging technology.

The calculations used to generate these graphs come from a package containing 770 fonts and

assumes that the impact of each font is equal. In reality, the first font will have a greater impact

as that triggers the font subsystem, but you can still use the calculated numbers to determine how

much faster launch time will be if you remove all of the fonts from a package by multiplying the

appropriate number times the number of fonts inside the package.

4.44.44.44.4 Results InterpretationResults InterpretationResults InterpretationResults Interpretation

From these test results, and of the more detailed results presented in a later section of this paper,

a number of conclusions may be made.

Fonts affect virtual application performance in three ways:

• Because fonts are also files, the font file adds overhead to the package. In addition to the

increase in overall package size,

the Central Directory is larger,

and the FilesystemMetadata, and

BlockMap files are bigger. This

affects the time to complete the

Add-Package operation

somewhat.

• Additionally, First-Run is impacted when the reparse points and sparse block settings for

the files are established. The impact of these files are felt whenever streaming of the font

file is required. This may be seen in mount (or auto-load) operations, or potentially as part

A PACKAGE OF 500 FONTS WILL ADD 1/4

SECOND TO THE ADD-PACKAGE STEP.

FONTS AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

pg. 14

of the publishing block is stream training is performed, or during first and every start of

the virtual environment.

• Because installed fonts are also registry entries, an installed font increases the size of the

virtual registry. This impact would occur as Add, Publish, and First Run steps, however the

impact of this on performance is too small to be detectable.

• As an internal extension, fonts adds time to the startup of the virtual environment every

time the virtual environment is started.

Because fonts are “internal extensions”,

it seems that the addition of fonts to a

package have little impact on the time to

complete the Publish-Package step other

than increased xml processing time.

While there is concern for Fonts performance impacts is during the logon deployment operations,

it is during the launch of an application to start a virtual environment that include virtual fonts

that has the greatest impact. While some of these impacts may not be specific to the number of

fonts, but just the amount of stuff that requires processing at different points when any fonts are

present, for the most part, the performance impact appears to be relative to the number of fonts.

The differences in start of virtual

environment launch performance in the

different scenarios is quite surprising. In

particular, there appears to be a launch

penalty that occurs when the package

has not been 100% cached locally, even

on secondary runs where everything needed should have been cached.

FONTS IN A PACKAGE HAVE A SMALL IMPACT

ON PUBLISH-APPVCLIENTPACKAGE.

WHEN PRE-CACHED, ABOUT 730 FONTS IN

A PACKAGE ADD 1 SECOND TO LAUNCH TIME.

WHEN NOT PRE-CACHED, ABOUT 190

TO220 FONTS IN A PACKAGE ADD 1 SECOND

TO INITIAL RUN LAUNCH TIME.

FONTS AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

pg. 15

4.54.54.54.5 Improvement OptionsImprovement OptionsImprovement OptionsImprovement Options

The following options for improving performance of packages with fonts are identified:

1. Removing unnecessary fonts will improve performance. It would be rare that an

application would add font files without installing them, but if this is detected they should

probably be removed. More likely, it might be possible to remove installed fonts from the

package. While requiring additional testing, this might be tried if an application adds a

large number of fonts that are not needed. In most cases, the software will use a “close

enough” font unless printing is involved.

2. Pre-caching will improve launch performance.

• Causing the font files to be part of the publishing block would add to the publish-

package step and improve launch somewhat, but not significantly as only 100%

package caching seems to help significantly. Instead, full caching of the package

should be considered.

• This is easy to do using the “Force” option in the sequencer stream training phase.

• As a Post-sequencing solution when the client is configured in caching mode,

turning on Autoload=2 will help. Even the default setting of Autoload=1 will

eventually help, after the first run.

• As a Post-sequencing solution when the client is configured with or without SCS

mode, scripting a mount command on the package will help. This is more likely to

be used when pre-caching apps during imaging for use in SCS mode, but is equally

applicable to RDS scenarios

3. Disabling the font-subsystem may also be considered. This may be done as a post-

sequencing operation by editing the DeploymentConfiguration.XML file and only affects

the one package. This change caries the same risks as uninstalling the fonts, but because

the files and registry entries are still present it only improve launch time performance.

FONTS AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

pg. 16

5555 Testing Strategy UsedTesting Strategy UsedTesting Strategy UsedTesting Strategy Used

This section provides details about how the testing was performed.

5.15.15.15.1 About the Testing PlatformAbout the Testing PlatformAbout the Testing PlatformAbout the Testing Platform

The testing results depicted in this paper are based on:

 App-V 5.0 SP2 with HotFix 4 running on a Windows 7 SP1 x86 virtual machine.

The testing was performed in an isolated environment using a Microsoft 2012 R2 server with

Hyper-V. The server has 24 processors and 64GB or RAM. To minimize external impacts, this

server utilizes local storage and contains a VM with the domain controller. App-V Package sources

were located on a share on this host.

The Test VM used had 2GB of RAM and was given 2 virtual CPUs. The App-V Client is configured

for Shared Content Store mode (which disables background streaming and writing of fault-

streamed data to the local cache).

5.25.25.25.2 About Test Packages and About Test Packages and About Test Packages and About Test Packages and ““““Streaming Streaming Streaming Streaming ConfigurationConfigurationConfigurationConfiguration””””

All Test packages used are specially constructed software packages that I developed. These

packages are generally stripped down to a bare minimum, except for an overabundance of the

one particular things we want to measure when using this package. In many cases, this means

custom software that I developed for the purpose of the test.

Unless specifically noted, each package was sequenced and configured for streaming by not

launching anything during the streaming training configuration phase of the sequencer. This

means that, barring mounting operations, almost everything in the package will fault-stream

(stream on demand).

5.35.35.35.3 About the Testing MethodsAbout the Testing MethodsAbout the Testing MethodsAbout the Testing Methods

All tests are automated using significant sleep periods before each portion of the testing to allow

all systems to settle down, and warm-up of the external components (hypervisor/fileshare) and

within the OS (App-V Client and drivers) are performed. The test process consists of:

• A Test Cycle that consists of a series of Test Passes.

• Each Test Pass consists of a number of Test Packages.

• Each Tested Package is tested using a series of actions and measurements.

A Tested Package, consists of a series of actions, always preceded by a significant sleep period to

allow system background processes to settle down.

FONTS AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

pg. 17

A Test Pass always starts from a freshly booted snapshot and with a dummy Test Package to warm

up the App-V Client and Driver sub-systems. The results of this dummy package are not used.

A Test Cycle always starts with a Test Pass to warm up the external components of the Hypervisor

and Windows File Share. Because the packages are relatively small compared to the amount of

memory available, the packages are likely retained in memory in the Windows Standby Lists after

the initial Test Cycle. These are described as follows, from the bottom up.

5.3.15.3.15.3.15.3.1 Test PackageTest PackageTest PackageTest Package

For a given Test Package, the series of actions includes:

• Waiting

• Add-AppVClientPackage

• Waiting

• Publish-AppVClientPackage

• Waiting

• [Optionally Mount-AppVClientPackage1]

• Waiting

• First run (launch “cmd.exe2 /c time /t” inside the virtual environment).

• Waiting

• Second run (launch “cmd.exe3 /c time /t” inside the virtual environment).

The time required for each of the actions to complete is recorded.

5.3.25.3.25.3.25.3.2 Test PassTest PassTest PassTest Pass

A Test Pass consists of testing multiple Test Packages as follows:

• Reverting the test VM to a snapshot.

• Waiting for the Hypervisor to settle.

• Booting the VM and logging in.

• Waiting.

• A series of actions and measurements on a warm-up package. These results are never

used, it is only performed to warm up the client (client service, drivers, and WMI) and to

ensure that each subsequent package fairly tested under similar conditions.

1 With SCS enabled, mounting the package does result in the actual file content being stored in the App-V file cache. I

test in SCS mode both with and without mounting to better delineate the cause of performance slowdowns on a

package.
2 This is used rather than a program in the package to produce a comparable time that varies based on special actions

that the client must perform during virtual environment startup and shutdown due to the package content.
3 The client is also known to perform special actions the first time a virtual environment is used, so the second run is

used for comparison to the first run.

FONTS AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

pg. 18

• Waiting.

• A series of actions and measurements on the first package.

• Waiting.

• A series of actions and measurements on the second package.

• Etc…

• Recording results

5.3.35.3.35.3.35.3.3 Test CycleTest CycleTest CycleTest Cycle

Finally, A Test Cycle consists of several consecutive test runs of the same Test Pass. The first pass

is used to “warm up” external systems and achieve a relatively consistent amount of caching by

the server. The results of this pass are not used, but the results of the remaining passes are

averaged to produce results. A Test Cycle typically requires a full day to complete.

5.45.45.45.4 About the Test Results AccuracyAbout the Test Results AccuracyAbout the Test Results AccuracyAbout the Test Results Accuracy

As careful as I attempt to be to eliminate variability in the results, there is a fair amount of

variability in results between two passes.

Due to the nature of the background interruptions affecting the results, the impact on result

accuracy is felt much more on measurements that are shorter in duration than those that are

longer. With measurements that are sub-second, this can produce results that typically vary by as

much as +/-10% from the average. Unfortunately, I cannot wash out this effect by making a

package with an extreme number of fonts due to OS and App-V limitations already discussed.

Instead, I use an approach to test with a sufficient number of test cycles and select the minimum

value seen on any of the tests. The more repetitions that are made, the better this minimum

value represents the time it takes for App-V to complete the task without the effects of any

extraneous background interference.

It should be noted that only TTF fonts were tested as part of this work. There is a small potential

of other font types having different performance characteristics.

FONTS AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

pg. 19

6666 Test Test Test Test Packages UtilizedPackages UtilizedPackages UtilizedPackages Utilized

This section details the packages used in testing.

All packages used in this test, including the base package, contain a small font installer application

with a couple of shortcuts. The application is only used on the sequencer for installation; its

inclusion in the package simulates a base application and makes it easy to test to see if the fonts

are visible in the virtual package. This application is installed into the PVAD folder in each case.

This allows for the evaluation of font impacts when packages/results are compared.

To separate out the impact of fonts as files of a certain size, and impact of detection, some of the

packages have the font files present without installing, and present under a different file

extension (and without installing).

6.16.16.16.1 Lots_OfNothing (Warmup) Lots_OfNothing (Warmup) Lots_OfNothing (Warmup) Lots_OfNothing (Warmup)

This is a minimal App-V Package.

In developing this package, I discovered that there is an issue with the App-V Client in that there

appears to be some sort of undocumented minimal package requirements. If you create a

package with no registry entries, no files, and no integrations, the Add-AppVClientPackage cmdlet

will error out with error 700002.

Therefore this package consists of one HKLM registry key, one HKCU registry key, one text file in

the PVAD folder, and one shortcut (to the text file). Package Statistics4:

Size of .AppV File (Compressed) 26,639

Size of Central Directory 722

Size of BlockMap (Compressed) 615

Size of AppxManifest (Compressed) 793

Size of Registry.Dat (Compressed) 25,731

Number of Entries + EmptyDirectories 8+0

Number of Fonts Detected 0

4 Package Statistics are provided by a tool called “AppV_Manage” developed by the author. “Number of Fonts

Detected” indicates the number recorded by the sequencer as fonts in the XML files; in some cases they will not be

effective at the client.

FONTS AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

pg. 20

This package is primarily used as the first package in a Test Pass, to warm up the OS and App-V

Client components and dependencies5.

6.26.26.26.2 LotsLotsLotsLots____OfFontsOfFontsOfFontsOfFonts_RenamedPVAD_RenamedPVAD_RenamedPVAD_RenamedPVAD

This package consists of the Font Installer/Viewer program, plus 770 font files copied into the

PVAD folder and renamed to an unknown extension, so as not to be detected by the sequencer.

These fonts are not installed into windows, just the files placed there and renamed.

The sequencer treats these as just files.

They add to the overall size of the AppV file and to the CentralDirectory and BlockMap files. They

also add to the number of Entries in the AppV file.

Package Statistics:

Size of .AppV File 33,283,040

Size of Central Directory 92,021

Size of BlockMap (Compressed) 64,715

Size of AppxManifest (Compressed) 1,047

Size of Registry.Dat (Compressed) 17,694

Number of Entries + EmptyDirectories 787+2

Number of Fonts Detected 0

5 When conducting tests that use mounting, I found it necessary to warm up the system without mounting this

package. It appears that mounting this package causes an additional any subsequent Add-AppVClientPackage

commands to take an extra around an extra second to complete. This issue only seems to exist with this package, and

mounting other packages does not affect subsequent Add cmdlets. The cause of this is unknown.

FONTS AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

pg. 21

6.36.36.36.3 Lots_OfFonts_Lots_OfFonts_Lots_OfFonts_Lots_OfFonts_RenamedRenamedRenamedRenamedVFSVFSVFSVFS

This package consists of the Font Installer/Viewer program, plus 770 font files copied into a VFS

folder and renamed to an unknown extension, so as not to be detected by the sequencer. These

fonts are not installed into windows, just the files placed there and renamed.

The sequencer detects these as just files. They add to the overall size of the AppV file and to the

CentralDirectory and BlockMap files. They also add to the number of Entries in the AppV file.

Package Statistics:

Size of .AppV File 33,343,913

Size of Central Directory 117,660

Size of BlockMap (Compressed) 65,314

Size of AppxManifest (Compressed) 1,061

Size of Registry.Dat (Compressed) 20,535

Number of Entries + EmptyDirectories 789+2

Number of Fonts Detected 0

6.46.46.46.4 Lots_OfFonts_CopiedPVADLots_OfFonts_CopiedPVADLots_OfFonts_CopiedPVADLots_OfFonts_CopiedPVAD

This package consists of the Font Installer/Viewer program, plus 770 font files copied into the

PVAD folder. These fonts are not installed into windows, just the files placed there.

The sequencer detects these as fonts, and includes them in the font list in the AppXManifest (and

external DeploymentConfiguration) file, but they are not installed and are not seen as fonts by

applications running in the virtual environment.

They add to the overall size of the AppV file and to the CentralDirectory, BlockMap, and

AppxManifest files. They also add to the number of Entries in the AppV file.

Package Statistics:

Size of .AppV File 33,285,865

Size of Central Directory 89,170

Size of BlockMap (Compressed) 64,713

Size of AppxManifest (Compressed) 5,293

Size of Registry.Dat (Compressed) 16,036

Number of Entries + EmptyDirectories 789+2

Number of Fonts Detected 770

FONTS AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

pg. 22

6.56.56.56.5 Lots_OfFontsLots_OfFontsLots_OfFontsLots_OfFonts_Copied_Copied_Copied_CopiedVFSVFSVFSVFS

This package consists of the Font Installer/Viewer program, plus 770 font files copied into a VFS

folder. These fonts are not installed into windows, just the files placed there.

The sequencer detects these as fonts, and includes them in the font list in the AppXManifest (and

external DeploymentConfiguration) file, but they are not installed and are not seen as fonts by

applications running in the virtual environment.

They add to the overall size of the AppV file and to the CentralDirectory, BlockMap, and

AppXManifest files. They also add to the number of Entries in the AppV file.

Package Statistics:

Size of .AppV File 33,341,033

Size of Central Directory 115,350

Size of BlockMap (Compressed) 65,234

Size of AppxManifest (Compressed) 5,482

Size of Registry.Dat (Compressed) 18,040

Number of Entries + EmptyDirectories 789+2

Number of Fonts Detected 770

6.66.66.66.6 LotsLotsLotsLots____OfOfOfOfFonts_Fonts_Fonts_Fonts_InstalledInstalledInstalledInstalled

This package consists of the Font Installer/Viewer program, plus 770 font files installed into the

Windows/Fonts folder (which is in the VFS area). The original source font files are not included in

the package.

The sequencer detects these as fonts, and includes them in the font list in the AppXManifest (and

external DeploymentConfiguration) file, and they are seen as fonts by applications running in the

virtual environment.

They add to the overall size of the AppV file and to the CentralDirectory, BlockMap,

AppXManifest, and Registry files. They also add to the number of Entries in the AppV file.

Package Statistics:

Size of .AppV File 33,518,711

Size of Central Directory 89,569

Size of BlockMap (Compressed) 65,484

Size of AppxManifest (Compressed) 5,198

Size of Registry.Dat (Compressed) 36,852

Number of Entries + EmptyDirectories 792+3

Number of Fonts Detected 770

FONTS AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

pg. 23

7777 Detail Test ResultsDetail Test ResultsDetail Test ResultsDetail Test Results

This section provides additional details of the testing results not reported in the summary.

The simplified results provided earlier in the summary are based on substantially detailed testing,

some of which the results are presented here. These tests are not necessarily scenario based, but

are designed to illuminate the actions of different parts of the App-V client. These details allow for

a more complete understanding of where deployment time impacts come from.

Results reported are based on an ideal test environment. Performance impacts identified

in this paper will be very different in production environments. Specific numbers are only

useful in comparison to numbers from other research papers in this series!

FONTS AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

pg. 24

7.17.17.17.1 SCS Mode Without MountingSCS Mode Without MountingSCS Mode Without MountingSCS Mode Without Mounting

In this test, Shared Content Store Mode is enabled as would typically be used. These results show

the performance that you can expect when SCS Mode is enabled.

These results may also be interpreted to show the performance that you can expect without SCS

mode enabled when background streaming is not enabled and font files are not included in the

streaming configuration, except for the Second run.

FONTS AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

pg. 25

From this (and procmon traces) we determine that the font subsystem reads in and processes

each of the installed font files at the start of the virtual environment each time the environment is

spun up. In an SCS mode, this means that the installed font files must be read over the network

as part of this processing.

At the start of the virtual environment, and font subsystem, only those files detected by the

sequencer and properly registered are required to be read in. Even when the sequencer detects

the copied files as fonts and lists them for the font subsystem, without registration, the start of

the virtual environment and startup of the font subsystem does not trigger them to be read in.

The slightly shorter time seen in the results for the second run for the case when fonts are

installed is expected according to Microsoft. During the first run, the final registry staging to the

user must occur so we expect the first run to take a little longer than the subsequent runs

because the package virtual registry is larger when those fonts are registered. The cause of the

additional overhead for the first run with registered fonts appears to be something the client does

to prepare the virtual font subsystem for this package.

From the numbers we reach conclusion numbers 1 and 2:

From this, and testing shown in the next section, we can recommend that for a package

containing a large number of registered fonts, forcing the fonts to be locally cached, via mounting

or forcing into the streaming training, can help with package launch times, saving about 3ms per

font.

IN SCS MODE, EACH FONT ADD ABOUT

1/3MS TO THE ADD-PACKAGE STEP.

MOST OF THAT TIME CAN BE ATTRIBUTED TO

THE EXISTENCE OF THE FONT FILE ITSELF.

IN SCS MODE, EACH FONT ADDS A LITTLE

OVER 5MS TO EACH FOR THE START OF THE

FIRST RUN VIRTUAL ENVIRONMENT.

FONTS AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

pg. 26

7.27.27.27.2 SCS Mode Testing with MountingSCS Mode Testing with MountingSCS Mode Testing with MountingSCS Mode Testing with Mounting

In these tests, SCS Mode is enabled, however, a mount operation is performed prior to running

the packages (which performs caching of the package locally, even when SCS mode is enabled). In

SCS mode, the autoload setting is ignored (automatically disabled), but mounting may be

performed. Although unusual, I wanted to test the possibility of pre-loading certain apps while in

SCS mode – which could be done using imaging technology.

The chart which follows shows the results calculated from tests on the various font packages in

these tests.

FONTS AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

pg. 27

The times shown are calculated as the time for the given package minus the time for the BasePkg

divided by the number of font files, producing a calculated impact in ms/font for each operation.

By comparing the first and second run results of this test against those of the SCS mode without

mounting, we can determine how much of the font overhead was processing and how much was

streaming the fonts down. However, those numbers do not add up! If you add the mount time to

the first run time above you get about 3.3ms/font, but this compares to a 5.2ms/font

measurement of the un-mounted SCS mode first launch.

It is possible that when the App-V file is purposely un-fragmented on the source media (which it

was in this case), that the mount command may be more efficient at loading than I/O pattern

generated by the font subsystem reading in all of those files. It is also possible that the mount

command is simply more efficient than fault streaming.

Conclusion number 3:

IN SCS MODE, EACH FONT ADDS ABOUT

1.4MS TO THE START OF THE VIRTUAL

ENVIRONMENT IF THE FONT FILE IS ALREADY

STREAMED LOCALLY.

FONTS AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

pg. 28

7.37.37.37.3 SCS Mode Disabled, No MountingSCS Mode Disabled, No MountingSCS Mode Disabled, No MountingSCS Mode Disabled, No Mounting

In these tests, SCS Mode is disabled and autoload is also disabled. This is closest to the default

setup for clients (where autoload is enabled only for apps previously run) but I completely

disabled autoload to keep things simpler.

For the package with the installed fonts, the 1st Run for this scenario is right in line with that of

SCS mode. But the high amount of time to start the virtual environment for the 2nd Run in this

series (when all of the font files should be locally cached) is surprising, especially when viewed

against the results in the mounted case that follows. The cause of this is currently unknown.

FONTS AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

pg. 29

7.47.47.47.4 SCS Mode Disabled, Mounting UsedSCS Mode Disabled, Mounting UsedSCS Mode Disabled, Mounting UsedSCS Mode Disabled, Mounting Used

In these tests, SCS Mode is disabled and autoload is disabled, but a Mount operation is performed

after publishing. This test simulates autoload=2 setting when the user doesn’t run the app for a

significant period of time after publishing to allow all packages to get fully loaded, but allows for

more accurate measurements.

NOTE: The mount time for CopyVFS should probably be about 2.0 ms/font. The result shown here

may be due to an uncaught testing error.

FONTS AND DEPLOYMENT PERFORMANCE

Copyright © 2014 TMurgent Technologies, LLP

pg. 30

8888 About This Research Paper SeriesAbout This Research Paper SeriesAbout This Research Paper SeriesAbout This Research Paper Series

This research paper is part of a series of papers, released by TMurgent Technologies, that

investigate the performance impacts that certain application contents can have in the deployment

of Microsoft App-V 5 packages.

Through these papers, we can better understand what areas to focus on when packaging

applications for App-V when deployment and end-user experience is important. Additionally,

with an understanding of these papers you can better target a specific package that is performing

poorly and prioritize your efforts to improve it.

TMurgent Technologies, LLP is based in Canton, MA, USA; just 17 miles south of the offices where

Microsoft develops the App-V product. TMurgent’s Tim Mangan has a long history with the

product, having built the original version at Softricity more than a dozen years ago. TMurgent is

well known in the App-V community as a source for the best training classes on App-V as well as

an endless supply of tools and information. More information is available at the website,

www.tmurgent.com

